83
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Lolium multiflorum (ryegrass) diet modifies the productive response and enhances the meat of grass carp (Ctenopharyngodon idella Val.) with omega 3 fatty acid beneficial to human health

, , &

References

  • Almeida, C., T. Altintzoglou, H. Cabral, and S. Vaz. 2015. Does seafood knowledge relate to more sustainable consumption? British Food Journal 117 (2):894–914. doi:10.1108/BFJ-04-2014-0156.
  • AOAC. 1995. Official methods of analysis. Washington, DC: Association of Official Analytical Chemist.
  • Aslam, S., A. Zuberi, and A. Shoaib. 2018. Effect of experimental diets on the activities of intestinal digestive enzymes of Grass carp, (Ctenopharyngodon idella) and Silver carp (Hypophthylmichthys molitrix). International Journal of Aquatic Science 9:51–57.
  • Blank, C., M. A. Neumann, M. Makrides, and R. A. Gibson. 2002. Optimizing DHA levels in piglets by lowering the linoleic acid to alpha-linolenic acid ratio. Journal of Lipid Research 43 (9):1537–43. doi:10.1194/jlr.M200152-JLR200.
  • Camargo, J. B. J., J. Radunz- Neto, T. Emanuelli, R. Lazzari, M. L. Costa, and T. S. Madeiros. 2006. Cultivo de alevinos de carpa capim (Ctenopharyngodon idella) alimentados com ração e forragens cultivadas. Revista Brasileira de Agrociência 12:211–15.
  • Carter, C. G., and A. R. Brafield. 1992. The relationship between specific dynamic action and growth in grass carp Ctenopharyngodon idella (Val.). Journal of Fish Biology 41 (6):895–907. doi:10.1111/j.1095-8649.1992.tb02635.x.
  • Chen, J., and H. Liu. 2020. Nutritional Indices for Assessing Fatty Acids: A Mini-Review. International Journal of Molecular Sciences 21 (16):5695. doi:10.3390/ijms21165695.
  • China Fishery Statistical Yearbook. 2013. Fishery bureau, ministry of agriculture. Beijing: China Agriculture Press. (in Chinese).
  • Claret, A., L. Guerrero, R. Ginés, A. Grau, M. D. Hernández, E. Aguirre, J. B. Peleteiro, C. Fernández-Pato, and C. Rodríguez-Rodríguez. 2014. Consumer beliefs regarding farmed versus wild fish. Appetite 79:25–31. doi:10.1016/j.appet.2014.03.031.
  • Costa, M. L., N. R. Radunz, M. E. Lazzarir, F. J. Losekanni, F. J. Sutili, Â. Z. Brum, C. A. Veiverberg, and J. A. Grzeczinski. 2008. Juvenis de carpa capim alimentados com capim teosinto e suplementados com diferentes taxas de arracoamento. Ciência Rural 38 (2):15–21. doi:10.1590/S0103-84782008000200031.
  • Cremer, M. C., J. Zhang, and E. Zhou. 2003. Mejoramiento de carpa herbívora y tilapia con alimentos basados en soja, en China. ASA. International Aquafeed 6 (3):24–30.
  • Debnath, D., A. K. Pala, N. P. Sahu, S. Yengkokpam, K. Baruah, D. Choudhury, and G. Venkateshwarlu. 2007. Digestive enzymes and metabolic profile of Labeo rohita fingerlings fed diets with different crude protein levels. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology 146 (1):107–14. doi:10.1016/j.cbpb.2006.09.008.
  • Du, Z. Y., P. Clouet, L. M. Huang, P. Degrace, J. G. Zheng, J. G. He, L. X. Tian, and Y. J. Liu. 2008. Utilization of different dietary lipid sources at high level in herbivorous grass carp (Ctenopharyngodon idella): Mechanism related to hepatic fatty acid oxidation. Aquaculture Nutrition 14 (1):77–92. doi:10.1111/j.1365-2095.2007.00507.x.
  • Du, Z.-Y., Y.-J. Liu, L.-X. Tian, J.-T. Wang, Y. Wang, and G.-Y. Liang. 2005. Effect of Dietary Lipid Level on Growth, Feed Utilization and Body Composition by Juvenile Grass Carp (Ctenopharyngodon Idella). Aquaculture Nutrition 11 (2):139–46. doi:10.1111/j.1365-2095.2004.00333.x.
  • Du, Z. Y., Y. J. Liu, L. X. Tian, J. T. Wang, Y. Wang, and G. Y. Liang. 2006. Effect of dietary lipid level on growth, feed utilization and body composition by juvenile grass carp (Ctenopharyngodon idella). Aquaculture Nutrition 11 (2):139–46. doi:10.1111/j.1365-2095.2004.00333.x.
  • Erickson, M. C. 1992. Variation of lipid and tocopherol composition in three strains of channel catfish (Ictalurus punctatus). Journal of the Science of Food and Agriculture 59 (4):529–36. doi:10.1002/jsfa.2740590416.
  • Faheem, M., S. Khaliq, N. Mustafa, S. Rani, and K. P. Lone. 2020. Dietary Moringa oleferia leaf meal induce growth, innate immunity and cytokine expression in grass carp, Ctenopharyngodon idella. Aquaculture Nutrition 26 (4):1164–72. doi:10.1111/anu.13073.
  • FAO. 2012. El estado mundial de la pesca y la acuicultura. Roma 231: 28–39.
  • Fernandes, C. E., M. A. S. da Vasconcelos, M. de Almeida Ribeiro, L. A. Sarubbo, S. A. C. Andrade, and A. B. M. de Filho. 2014. Nutritional and lipid profiles in marine fish species from Brazil. Food Chemistry 160:67–71. doi:10.1016/j.foodchem.2014.03.055.
  • Folch, J., M. Lees, and G. H. S. Sloane-Stanley. 1957. A simple method for the isolation and purification of total lipids from animal tissues. Journal of Biological Chemistry 226 (1):497–509. doi:10.1016/S0021-9258(18)64849-5.
  • Galindo, A., D. Garrido, Ó. Monroig, J. A. Pérez, M. B. Betancor, N. G. Acosta, N. Kabeya, M. A. Marrero, A. Bolaños, and C. Rodríguez. 2021. Polyunsaturated fatty acid metabolism in three fish species with different trophic level. Aquaculture 530:735761. doi:10.1016/j.aquaculture.2020.735761.
  • Gao, W., Liu, Y.-J., Tian, L.-X., Mai, K.-S., Liang, G.-Y., Yang, H.-J., Huai, M.-Y., and Luo, W.-J., 2009. Effect of dietary carbohydrate-to-lipid ratios on growth performance, body composition, nutrient utilization and hepatic enzymes activities of herbivorous grass carp (Ctenopharyngodon idella): Effect of dietary carbohydrate-to-lipid ratios on growth performance. Aquaculture Nutrition (16):327–333. doi:10.1111/j.1365-2095.2009.00668.x.
  • Gao, W., Y. J. Liu, L. X. Tian, K. S. Mai, G. Y. Liang, H. J. Yang, M. Y. Huai, and W. J. Luo. 2010. Effect of dietary carbohydrate-to-lipid ratios on growth performance, body composition, nutrient utilization and hepatic enzymes activities of herbivorous grass carp (Ctenopharyngodon idella). Aquaculture Nutrition 16 (3):327–33. doi:10.1111/j.1365-2095.2009.00668.x.
  • Gao, W., Y. J. Liu, L. X. Tian, K. S. Mai, G. Y. Liang, H. J. Yang, M. Y. Huai, and W. J. Luo. 2011. Effect of dietary carbohydrate-to-lipid ratios on growth performance, body composition, nutrient utilization and hepatic enzymes activities of herbivorous grass carp (Ctenopharyngodon idella). Aquaculture Nutrition 16 (327–333). doi: 10.1111/j.1365-2095.2009.00668.x.
  • Garcia, P. T., A. Pordomingo, C. D. Pérez, M. D. Rios, A. M. Sancho, G. Volpi Lagreca, and J. J. Casal. 2015. Influence of cultivar and cutting date on the fatty acid of forage crops for grazing beef production in Argentina. Grass and Forage Science 71:1–10.
  • Graeff, A., and R. De Leao Serafini. 2015. Desenvolvimento da Carpa capim (Ctenopharyngodon idella) alimentadas com rações completas peletizadas a base de azevém (Lolium multiflorum) e trevo branco (Trifolium repens). Revista Electronica de Veterinaria 16:1–10.
  • Guo, X., X. F. Liang, L. Fang, X. Yuan, Y. Zhou, J. Zhang, and B. Li. 2015. Effects of dietary non-protein energy source levels on growth performance, body composition and lipid metabolism in herbivorous grass carp (Ctenopharyngodon idella Val.). Aquaculture Research 46 (5):1197–208. doi:10.1111/are.12275.
  • Guo, X., W. Tong, Y. Ruan, A. J. Sinclair, and D. Li. 2020. Different metabolism of EPA, DPA and DHA in humans: A double-blind cross-over study. Prostaglandins, Leukotrienes and Essential Fatty Acids 158:102033. doi:10.1016/j.plefa.2019.102033.
  • Hafedh, Y. S. Al. 1999. Effects of Dietary Protein on Growth and Body Composition of Nile Tilapia, Oreochromis Niloticus L.: Effects of Dietary Protein on Nile Tilapia.: Aquaculture Research 30 (5):385–93. doi:10.1046/j.1365-2109.1999.00343.x.
  • Hernández-Cruz, C. M., A. Mesa-Rodríguez, M. Betancor, A. Haroun-Izquierdo, M. Izquierdo, T. Benítez-Santana, S. Torrecillas, and J. Roo. 2015. Growth performance and gene expression in gilthead sea bream (Sparus aurata) fed microdiets with high docosahexaenoic acid and antioxidant levels. Aquaculture Nutrition 21 (6):881–91. doi:10.1111/anu.12213.
  • Hossain, M. M., M. H. Rahman, M. L. Ali, S. Khan, M. M. Haque, and M. Shahjahan. 2020. Development of a low-cost polyculture system utilizing Hygroryza aristata floating grass in the coastal wetlands of Bangladesh. Aquaculture 527:735430. doi:10.1016/j.aquaculture.2020.735430.
  • Hosseini, H., M. Mahmoudzadeh, M. Rezaei, L. Mahmoudzadeh, R. Khaksar, N. K. Khosroshahi, and A. Babakhani. 2014. Effect of different cooking methods on minerals, vitamins and nutritional quality indices of kutum roach (Rutilus frisii kutum). Food Chemistry 148:86–91. doi:10.1016/j.foodchem.2013.10.012.
  • Huang, X., J. Sun, C. Bian, S. Ji, and H. Ji. 2020. Perilipin 1–3 in grass carp Ctenopharyngodon idella: Molecular characterization, gene structure, tissue distribution, and mRNA expression in DHA-induced lipid droplet formation in adipocytes. Fish Physiology and Biochemistry 46 (6):2311–22. doi:10.1007/s10695-020-00857-x.
  • Ji, H., J. Li, and P. Liu. 2011. Regulation of growth performance and lipid metabolism by dietary n-3 highly unsaturated fatty acids in juvenile grass carp, Ctenopharyngodon idella. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology 159 (1):49–56. doi:10.1016/j.cbpb.2011.01.009.
  • Jin, A., C. X. Lei, J. J. Tian, J. Sun, and H. Ji. 2018a. Dietary docosahexaenoic acid decreased lipid accumulation via inducing adipocytes apoptosis of grass carp, Ctenopharyngodon idella. Fish Physiology and Biochemistry 44:197–207. doi:10.1007/s10695-017-0424-6.
  • Jin, A., X. Shi, Y. Liu, J. Sun, and H. Ji. 2018b. Docosahexaenoic acid induces PPARγ-dependent preadipocytes apoptosis in grass carp Ctenopharyngodon idella. General and Comparative Endocrinology 266:211–19. doi:10.1016/j.ygcen.2018.05.020.
  • Jin, Y., L. X. Tian, S. W. Xie, D. Q. Guao, H. J. Yang, G. Y. Liang, and Y. J. Liu. 2014. Interactions between dietary protein levels, growth performance, feed utilization, gene expression and metabolic products in juvenile grass carp (Ctenopharyngodon idella). Aquaculture 437:75–83. doi:10.1016/j.aquaculture.2014.11.031.
  • Khan, M. A., A. K. Jafri, and N. K. Chadha. 2004. Growth, reproductive performance, muscle and egg composition in grass carp, Ctenopharyngodon idella (Valenciennes), fed hydrilla or formulated diets with varying protein levels. Aquaculture Research 35 (13):1277–85. doi:10.1111/j.1365-2109.2004.01150.x.
  • Kutzner, L., C. Esselun, N. Franke, K. P. Schoenfeld, G. Eckert, and N. Helge Schebb. 2020. Effect of dietary EPA and DHA on murine blood and liver fatty acid profile and liver oxylipin pattern depending on high and low dietary n6-PUFA. Food & Function 11 (10):9177–91. doi:10.1039/D0FO01462A.
  • Lei, C. X., J. J. Tian, H. Ji, L. Q. Chen, and Z. Y. Du. 2015. Dietary alpha-linolenic acid affects lipid metabolism and tissue fatty acid profile and induces apoptosis in intraperitoneal adipose tissue of juvenile grass carp (Ctenopharyngodon idella). Aquaculture Nutrition 21:1–15.
  • Li, X., S. Chen, J. Sun, X. Huang, H. Tang, Y. He, Q. Pan, and L. Gan. 2020. Partial substitution of soybean meal with faba bean meal in grass carp (Ctenopharyngodon idella) diets, and the effects on muscle fatty acid composition, flesh quality, and expression of myogenic regulatory factors. Journal of the World Aquaculture Society 51 (5):1145–60. doi:10.1111/jwas.12671.
  • Li, J., F. X. Liang, Q. Tan, X. Yuan, L. Liu, Y. Zhou, and B. Li. 2015. Effects of vitamin E on growth performance and antioxidant status in juvenile grass carp Ctenopharyngodon idella. Aquaculture 40:21–27. doi:10.1016/j.aquaculture.2014.11.007.
  • Liu, J.-H., Q. Wang, Q.-L. You, Z.-L. Li, N.-Y. Hu, Y. Wang, Z.-L. Jin, S.-J. Li, X.-W. Li, J.-M. Yang, et al. 2020. Acute EPA-induced learning and memory impairment in mice is prevented by DHA. Nature Communications 11 (1):5465. doi:10.1038/s41467-020-19255-1.
  • Łuczynska, J., B. Paszczyk, J. Nowosad, and M. J. Łuczy´nski. 2017. Mercury, fatty acids content and lipid quality indexes in muscles of freshwater and marine fish on the Polish market. Risk assessment of fish consumption. International Journal of Environmental Research and Public Health 14 (10):1120. doi:10.3390/ijerph14101120.
  • Maas, R. M., M. C. J. Verdegem, G. F. Wiegertjes, and J. W. Schrama. 2020. Carbohydrate utilisation by tilapia: A meta-analytical approach. Reviews in Aquaculture 12:1851–66. doi:10.1111/raq.12413.
  • Mahmood, S., N. Khan, K. J. Iqbal, M. Ashraf, and A. Khalique. 2018. Evaluation of water hyacinth (Eichhornia crassipes) supplemented diets on the growth, digestibility and histology of grass carp (Ctenopharyngodon idella) fingerlings. Journal of Applied Animal Research 46 (1):24–28. doi:10.1080/09712119.2016.1256291.
  • Marques, N. R., C. Hayashi, S. R. Souza, and T. Soares. 2004. Efeito de diferentes de arracoamento para alevinos de carpa-carpim (Ctenopharyngodon idella) em condicoes experimentais. B. Inst. Pesca, Sao Paulo 30:51–56.
  • Martino, R. C., J. E. P. Cyrino, L. Portz, and L. C. Trugo. 2002. Effect of dietary lipid level on nutritional performance of the surubim, Pseudoplatystoma coruscans. Aquaculture 209 (1–4):209–18. doi:10.1016/S0044-8486(01)00738-4.
  • Melo, J. F. B., M. Tavares-Dias, and L. M. Lundstedt. 2006. Efeito do conteúdo de proteína na dieta sobre os parâmetros hematológicos e metabólicos do bagre sul americano Rhamdia quelen. Revista de Ciências Agroambientais 1:43–51.
  • Monteiro, M., E. Matos, R. Ramos, I. Campos, and L. M. Valente. 2018. A blend of land animal fats can replace up to 75% fish oil without a_ecting growth and nutrient utilization of European seabass. Aquaculture 487:22–31. doi:10.1016/j.aquaculture.2017.12.043.
  • Montenegro, L. F., A. M. Descalzo, S. A. Cunzolo, and C. D. Pérez. 2020. Modification of the content of n-3 highly unsaturated fatty acid, chemical composition, and lipid nutritional indices in the meat of Grass Carp (Ctenopharyngodon idella) fed alfalfa (Medicago sativa) pellets. Journal of Animal Science 98 (4). doi: 10.1093/jas/skaa084.
  • Morgan, S. A., S. A. Huws, S. J. Lister, R. Sanderson, and N. D. Scollan. 2020. Phenotypic Variation and Relationships between Fatty Acid Concentrations and Feed Value of Perennial Ryegrass Genotypes from a Breeding Population. Agronomy 10 (3):343. doi:10.3390/agronomy10030343.
  • Mouludi-Saleh, A., S. Eagderi, K. Abbasi, and S. M. Salavatian. 2021. Length–weight relationship and condition factor of ten cyprinid fish species from the Caspian Sea, Urmia Lake and Persian Gulf basins of Iran. Journal of Fish 9:91401–91401.
  • Nantapo, C. W. T., V. Muchenje, T. T. Nkukwana, A. Hugo, A. M. Descalzo, G. Grigioni, and L. C. Hoffman. 2015. Socioeconomic dynamics and innovative technologies affecting health-related lipid content in diets: Implications on global food and nutrition security. Food Research International 76:896–905. doi:10.1016/j.foodres.2015.05.033.
  • Omri, B., R. Chalghoumi, L. Izzo, A. Ritieni, M. Lucarini, A. Durazzo, H. Abdouli, and A. Santini. 2019. Effect of dietary incorporation of linseed alone or together with tomato-red pepper mix on laying hens’ egg yolk fatty acids profile and health lipid indexes. Nutrients 11 (4):813–20. doi:10.3390/nu11040813.
  • Palladino, R. A., M. O´Donovan, E. Kennedy, J. J. Murphy, T. M. Boland, and D. A. Kenny. 2009. Fatty acid composition and nutritive value of twelve cultivars of perennial ryegrass. Grass and Forage Science 64 (2):219–26. doi:10.1111/j.1365-2494.2009.00683.x.
  • Pariza, M. W., Y. Park, and M. E. Cook. 2001. The biologically active isomers of conjugated linoleic acid. Progress in Lipid Research 40 (4):283–98. doi:10.1016/s0163-7827(01)00008-x.
  • Rincón-Cervera, M. Á., V. González-Barriga, J. Romero, R. Rojas, and S. López-Arana. 2020. Quantification and distribution of omega-3 fatty acids in south pacific fish and shellfish species. Foods 9 (2):233. doi:10.3390/foods9020233.
  • Rincón-Cervera, M. Á., V. González-Barriga, R. Valenzuela, S. López-Arana, J. Romero, and A. Valenzuela. 2019. Profile and distribution of fatty acids in edible parts of commonly consumed marine fishes in Chile. Food Chemistry 274:123–29. doi:10.1016/j.foodchem.2018.08.113.
  • Risius, A., U. Hamm, and M. Janssen. 2019. Target groups for fish from aquaculture: Consumer segmentation based on sustainability attributes and country of origin. Aquaculture 99:31–347.
  • Saini, R. K., and Y. S. Keum. 2018. Omega-3 and omega-6 polyunsaturated fatty acids: Dietary sources, metabolism, and significance. Life Sciences 203:255–67. doi:10.1016/j.lfs.2018.04.049.
  • Sal, F.M.; Wicki, G., and Merino, O.G. 2009. Evaluación del crecimiento del amur (Ctenopharyngodon idella) en dos fases, pre-engorde y engorde, con diferentes dietas y densidades de cultivo. Natura Neotropicalis 40: 125–138.
  • Santos-Silva, J., R. Bessa, and M. Santos Silva. 2002. Effect of genotype, feeding system and slaughter weight on the quality of light lambs II. Fatty acid composition of meat. Livestock Production Science 77 (2–3):187–94. doi:10.1016/S0301-6226(02)00059-3.
  • Schrama, J. W., M. N. Haidar, I. Geurden, L. T. N. Heinsbroek, and S. J. Kaushik. 2018. Energy efficiency of digestibleprotein, fat and carbohydrate utilisation for growth in rainbow trout and Nile tilapia. British Journal of Nutrition 119 (7):782–91. doi:10.1017/S0007114518000259.
  • Sioem, I., L. Van Lieshout, A. Eilander, M. Fleith, S. Lohner, A. Szommer, C. Petisca, S. Eussen, S. Forsyth, P. D. Calder, et al. 2017. Systematic review on n-3 and n-6 polyunsaturated fatty acid intake in European countries in light of the current recommendations- focus on specific population groups. Annals of Nutrition and Metabolism 70 (1):39–50. doi:10.1159/000456723.
  • Solomon, J. K. Q., B. Macoon, and D. J. Lang. 2017. Harvest management based on leaf stage of a tetraploid vs. a diploid cultivar of annual ryegrass. Grass and Forage Science 72 (4):743–56. doi:10.1111/gfs.12313.
  • Sun, S., J. Ye, J. Chen, Y. Wang, and L. Chen. 2011. Effect of dietary fish oil replacement by rapeseed oil on the growth, fatty acid composition and serum non-specific immunity response of fingerling black carp, Mylopharyngodon piceus. Aquaculture Nutrition 17 (4):441–50. doi:10.1111/j.1365-2095.2010.00822.x.
  • Tang, T., J. Bai, Z. Ao, Z. Wei, Y. Hu, and S. Liu. 2021. Effects of dietary paper mulberry (broussonetia papyrifera) on growth performance and muscle quality of grass carp (Ctenopharyngodon idella). Animals 11 (6):1655. doi:10.3390/ani11061655.
  • Tas, B. M., H. Z. Taweel, H. J. Smit, A. Elgersma, J. Dijkstra, and S. Tamminga. 2005. Effects of perennial ryegrass cultivars on intake, digestibility, and milk yield in dairy cows. Journal of Dairy Science 88 (9):3240–48. doi:10.3168/jds.S0022-0302(05)73007-1.
  • Testi, S., A. Bonaldo, P. Gatta, and A. Badiani. 2006. Nutritional traits of dorsal and ventral fillets from three farmed fish species. Food Chemistry 98 (1):104–11. doi:10.1016/j.foodchem.2005.05.053.
  • Ulbricht, T. L. V., and D. A. T. Southgate. 1991. Coronary heart disease: Seven dietary factors. The Lancet 338 (8773):985–92. doi:10.1016/0140-6736(91)91846-M.
  • Urlić, M., I. Urlić, H. Urlić, T. Mašek, B. Benzon, M. Vitlov Uljević, K. Vukojević, and N. Filipović. 2020. Effects of different n6/n3 PUFAs dietary ratio on cardiac diabetic neuropathy. Nutrients 12 (9):2761. doi:10.3390/nu12092761.
  • Vandeputte, M., Kocour, M., Mauger, S., Rodina, M., Launay, A., Gela, D., Dupont Nivet, M., Hulak, M., and Linhart, O., 2008. Genetic variation for growth at one and two summers of age in the common carp (Cyprinus carpio L.): Heritability estimates and response to selection. Aquaculture (277):7–13. doi:10.1016/j.aquaculture.2008.02.009.
  • Villalta, M., A. Estévez, M. P. Bransden, and J. G. Bell. 2005. The effect of graded concentrations of dietary DHA on growth, survival and tissue fatty acid profile of Senegal sole (Solea senegalensis) larvae during the Artemia feeding period. Aquaculture 249 (1–4):353–65. doi:10.1016/j.aquaculture.2005.03.037.
  • Witkowska, I. M., C. Wever, G. Gort, and A. Elgersma. 2008. Effects of Nitrogen rate and regrowth interval on perennial ryegrass fatty acid content during the growing season. Agronomical Journal 5 (5):1371–79. doi:10.2134/agronj2007.0215.
  • Yang, Qibin. 2016. Effect of Temperature on Growth, Survival and Occurrence of Skeletal Deformity in the Golden Pompano Trachinotus Ovatus Larvae. Indian Journal of Fisheries 63 (1). doi:10.21077/ijf.2016.63.1.51490-10.
  • Yıldız, M., T. O. Eroldoğan, S. Ofori-Mensah, K. Engin, and M. A. Baltacı. 2018. The effects of fish oil replacement by vegetable oils on growth performance and fatty acid profile of rainbow trout: Re-feeding with fish oil finishing diet improved the fatty acid composition. Aquaculture 488:123–33. doi:10.1016/j.aquaculture.2017.12.030.
  • Yıldız, M., Eroldoğan, T.O., Ofori-Mensah, S., Engin, K., and Baltacı, M.A., 2018. The effects of fish oil replacement by vegetable oils on growth performance and fatty acid profile of rainbow trout: Re-feeding with fish oil finishing diet improved the fatty acid composition. Aquaculture (488):123–133. doi:10.1016/j.aquaculture.2017.12.030.
  • Yurchenko, S., A. Sats, V. Tatar, T. Kaart, H. Mootse, and I. Jõudu. 2018. Fatty acid profile of milk from Saanen and Swedish Landrace goats. Food Chemistry 254:326–32. doi:10.1016/j.foodchem.2018.02.041.
  • Zhen, D., Y. J. Liu, L. X. Tian, J. G. He, J. M. Cao, and G. Y. Lian. 2006. The influence of feeding rate on growth, feed efficiency and body composition of juvenile grass carp (Ctenopharingodon idella). Aquaculture International 14 (3):247–57. doi:10.1007/s10499-005-9029-7.
  • Zhou, J. S., S. S. Liu, H. Ji, and H. B. Yu. 2018. Effect of replacing dietary fish meal with black soldier fly larvae meal on growth and fatty acid composition of Jian carp (Cyprinus carpio var. Jian). Aquaculture Nutrition 24:424–33. doi:10.1111/anu.12574.
  • Zorlu, K., and E. Gümüş. 2021. Effect of dietary fish oil replacement with grape seed oil on growth performance, feed utilization and fatty acid profile of mirror carp, Cyprinus carpio, fingerlings. Aquaculture Research. doi:10.1111/are.15704.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.