81
Views
0
CrossRef citations to date
0
Altmetric
Research Article

In vivo and in vitro assays using biosynthesized silver nanoparticles on Aeromonas hydrophila-infected Clarias gariepinus

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, , , ORCID Icon & show all

References

  • Abd El-Gawad, E. A., A. M. El Asely, E. I. Soror, A. A. Abbass, and B. Austin. 2020. Effect of dietary Moringa oleifera leaf on the immune response and control of Aeromonas hydrophila infection in Nile tilapia (Oreochromis niloticus) fry. Aquaculture International 28 (1):389–402. doi:10.1007/s10499-019-00469-0.
  • Agarwal, H., S. V. Kumar, and S. Rajeshkumar. 2021. Antidiabetic effect of silver nanoparticles synthesized using lemongrass (Cymbopogon Citratus) through conventional heating and microwave irradiation approach. Journal of Microbiology, Biotechnology and Food Sciences 2021:371–76.
  • Ahmed, S., A. M. Saifullah, B. L. Swami, and S. Ikram. 2016. Green synthesis of silver nanoparticles using Azadirachta indica aqueous leaf extract. Journal of Radiation Research and Applied Sciences 9 (1):1–7. doi:10.1016/j.jrras.2015.06.006.
  • Ali, M., T. Ahmed, W. Wu, A. Hossain, R. Hafeez, M. Islam Masum, Y. Wang, Q. An, G. Sun, and B. Li. 2020. Advancements in plant and microbe-based synthesis of metallic nanoparticles and their antimicrobial activity against plant pathogens. Nanomaterials 10 (6):1146. doi:10.3390/nano10061146.
  • Ansari, M., E. Rahimi, and M. Raissy. 2011. Antibiotic susceptibility and resistance of Aeromonas spp. isolated from fish. African Journal of Microbiology Research 5:5772–75.
  • Azzini, E., A. Durazzo, M. S. Foddai, O. Temperini, E. Venneria, S. Valentini, and G. Maiani. 2014. Phytochemicals content in Italian garlic bulb (Allium sativum L.) varieties. Journal of Food Research 3 (4):26. doi:10.5539/jfr.v3n4p26.
  • Ballarin, L., M. Dall’Oro, D. Bertotto, A. Libertini, A. Francescon, and A. Barbaro. 2004. Haematological parameters in Umbrina cirrosa (Teleostei, Sciaenidae): A comparison between diploid and triploid specimens. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology 138 (1):45–51. doi:10.1016/j.cbpb.2004.02.019.
  • Bandeira, M., M. Giovanela, M. Roesch-Ely, D. M. Devine, and J. da Silva Crespo. 2020. Green synthesis of zinc oxide nanoparticles: A review of the synthesis methodology and mechanism of formation. Sustainable Chemistry and Pharmacy 15:100223. doi:10.1016/j.scp.2020.100223.
  • Borase, H. P., B. K. Salunke, R. B. Salunkhe, C. D. Patil, J. E. Hallsworth, B. S. Kim, and S. V. Patil. 2014. Plant extract: A promising biomatrix for ecofriendly, controlled synthesis of silver nanoparticles. Applied Biochemistry and Biotechnology 173 (1):1–29. doi:10.1007/s12010-014-0831-4.
  • Bose, D., and S. Chatterjee. 2016. Biogenic synthesis of silver nanoparticles using guava (Psidium guajava) leaf extract and its antibacterial activity against Pseudomonas aeruginosa. Applied Nanoscience 6 (6):895–901. doi:10.1007/s13204-015-0496-5.
  • Chandrarathna, H. P. S. U., C. Nikapitiya, S. H. S. Dananjaya, C. U. B. Wijerathne, S. H. M. P. Wimalasena, H. J. Kwun, G.-J. Heo, J. Lee, and M. De Zoysa. 2018. Outcome of co-infection with opportunistic and multidrug resistant Aeromonas hydrophila and A. veronii in zebrafish: Identification, characterization, pathogenicity and immune responses. Fish & Shellfish Immunology 80:573–81. doi:10.1016/j.fsi.2018.06.049.
  • Das, S. K., M. M. R. Khan, A. K. Guha, and N. Naskar. 2013. Bio-inspired fabrication of silver nanoparticles on nanostructured silica: Characterization and application as a highly efficient hydrogenation catalyst. Green Chemistry 15 (9):2548–57. doi:10.1039/c3gc40310f.
  • Durán, N., M. Durán, M. B. De Jesus, A. B. Seabra, W. J. Fávaro, and G. Nakazato. 2016. Silver nanoparticles: A new view on mechanistic aspects on antimicrobial activity. Nanomedicine: Nanotechnology, Biology and Medicine 12 (3):789–99. doi:10.1016/j.nano.2015.11.016.
  • El‐Adawy, M. M., A. E. Eissa, M. Shaalan, A. A. Ahmed, N. A. Younis, M. M. Ismail, and M. Abdelsalam. 2021. Green synthesis and physical properties of Gum Arabic‐silver nanoparticles and its antibacterial efficacy against fish bacterial pathogens. Aquaculture Research 52 (3):1247–54. doi:10.1111/are.14983.
  • Gan, P. P., S. H. Ng, Y. Huang, and S. F. Y. Li. 2012. Green synthesis of gold nanoparticles using palm oil mill effluent (POME): A low-cost and eco-friendly viable approach. Bioresource Technology 113:132–35. doi:10.1016/j.biortech.2012.01.015.
  • Ghildiyal, R., V. Prakash, V. Chaudhary, V. Gupta, and R. Gabrani. 2020. Phytochemicals as antiviral agents: Recent updates. Plant-derived bioactives. Singapore: Springer. 279–95.
  • Ghotekar, S., T. Pagar, S. Pansambal, and R. Oza. 2020. A review on green synthesis of sulfur nanoparticles via plant extract, characterization and its applications. Advanced Journal of Chemistry-Section B:128–43.
  • Gomathi, A., S. X. Rajarathinam, A. M. Sadiq, and S. Rajeshkumar. 2020. Anticancer activity of silver nanoparticles synthesized using aqueous fruit shell extract of Tamarindus indica on MCF-7 human breast cancer cell line. Journal of Drug Delivery Science and Technology 55:101376. doi:10.1016/j.jddst.2019.101376.
  • Gupta, K., S. Barua, S. N. Hazarika, A. K. Manhar, D. Nath, N. Karak, N. D. Namsa, R. Mukhopadhyay, V. C. Kalia, and M. Mandal. 2014. Green silver nanoparticles: Enhanced antimicrobial and antibiofilm activity with effects on DNA replication and cell cytotoxicity. RSC Advances 4 (95):52845–55. doi:10.1039/C4RA08791G.
  • Hardi, E. H., R. A. Nugroho, A. Isnansetyo, M. Agriandini, I. W. Kusuma, and A. Syafei 2019. Simultaneous administration of Boesenbergia pandurata extract and vaccination to stimulate immune response in Tilapia, Oreochromis niloticus.
  • Hardi, E. H., R. A. Nugroho, I. W. Kusuma, W. Suwinarti, A. Sudaryono, and R. Rostika 2018a. Borneo herbal plant extracts as a natural medication for prophylaxis and treatment of Aeromonas hydrophila and Pseudomonas fluorescens infection in tilapia (Oreochromis niloticus). F1000Research 7.
  • Hardi, E. H., R. A. Nugroho, G. Saptiani, R. Sarinah, M. Agriandini, and M. Mawardi. 2018b. Identification of potentially pathogenic bacteria from tilapia (Oreochromis niloticus) and channel catfish (Clarias batrachus) culture in Samarinda, East Kalimantan, Indonesia. Biodiversitas Journal of Biological Diversity 19 (2):480–88. doi:10.13057/biodiv/d190215.
  • Harikrishnan, R., and C. Balasundaram. 2008. In vitro and in vivo studies of the use of some medicinal herbals against the pathogen Aeromonas hydrophila in Goldfish. Journal of Aquatic Animal Health 20 (3):165–76. doi:10.1577/H05-035.1.
  • Hasnain, M. S., M. N. Javed, M. S. Alam, P. Rishishwar, S. Rishishwar, S. Ali, A. K. Nayak, and S. Beg. 2019. Purple heart plant leaves extract-mediated silver nanoparticle synthesis: Optimization by box-behnken design. Materials Science and Engineering: C 99:1105–14. doi:10.1016/j.msec.2019.02.061.
  • Hayatgheib, N., E. Moreau, S. Calvez, D. Lepelletier, and H. Pouliquen. 2020. A review of functional feeds and the control of Aeromonas infections in freshwater fish. Aquaculture International 28 (3):1083–123. doi:10.1007/s10499-020-00514-3.
  • Helal, R., and M. F. Melzig. 2011. In vitro effects of selected saponins on the production and release of lysozyme activity of human monocytic and epithelial cell lines. Scientia Pharmaceutica 79 (2):337–50. doi:10.3797/scipharm.1012-15.
  • Holmström, K., S. Gräslund, A. Wahlström, S. Poungshompoo, B. E. Bengtsson, and N. Kautsky. 2003. Antibiotic use in shrimp farming and implications for environmental impacts and human health. International Journal of Food Science & Technology 38 (3):255–66. doi:10.1046/j.1365-2621.2003.00671.x.
  • Huang, L., X. Weng, Z. Chen, M. Megharaj, and R. Naidu. 2014. Green synthesis of iron nanoparticles by various tea extracts: Comparative study of the reactivity. Spectrochimica Acta Part A, Molecular and Biomolecular Spectroscopy 130:295–301. doi:10.1016/j.saa.2014.04.037.
  • Hwang, I., J. Lee, J. H. Hwang, K. J. Kim, and D. G. Lee. 2012. Silver nanoparticles induce apoptotic cell death in Candida albicans through the increase of hydroxyl radicals. The FEBS Journal 279 (7):1327–38. doi:10.1111/j.1742-4658.2012.08527.x.
  • Jovanović, A., P. Petrović, V. Đorđević, G. Zdunić, K. Šavikin, and B. Bugarski. 2017. Polyphenols extraction from plant sources. Lekovite sirovine (37):45–49. doi:10.5937/leksir1737045J.
  • Kanagasubbulakshmi, S., and K. Kadirvelu. 2017. Green synthesis of iron oxide nanoparticles using Lagenaria siceraria and evaluation of its antimicrobial activity. Defence Life Science Journal 2 (4):422–27. doi:10.14429/dlsj.2.12277.
  • Khatua, A., E. Priyadarshini, P. Rajamani, A. Patel, J. Kumar, A. Naik, M. Saravanan, H. Barabadi, A. Prasad, and B. Paul. 2020. Phytosynthesis, characterization and fungicidal potential of emerging gold nanoparticles using Pongamia pinnata leave extract: A novel approach in nanoparticle synthesis. Journal of Cluster Science 31 (1):125–31. doi:10.1007/s10876-019-01624-6.
  • Khodadadi, B., M. Bordbar, and M. Nasrollahzadeh. 2017. Achillea millefolium L. extract mediated green synthesis of waste peach kernel shell supported silver nanoparticles: Application of the nanoparticles for catalytic reduction of a variety of dyes in water. Journal of Colloid and Interface Science 493:85–93. doi:10.1016/j.jcis.2017.01.012.
  • Kitagawa, S., H. Fujisawa, and H. Sakurai. 1992. Scavenging effects of dihydric and polyhydric phenols on superoxide anion radicals, studied by electron spin resonance spectrometry. Chemical & Pharmaceutical Bulletin 40 (2):304–07. doi:10.1248/cpb.40.304.
  • Kumar, R., G. Ghoshal, A. Jain, and M. Goyal. 2017. Rapid green synthesis of silver nanoparticles (AgNPs) using (Prunus persica) plants extract: Exploring its antimicrobial and catalytic activities. Journal of Nanomedicine & Nanotechnology 8:1–8.
  • Kumar, P. V., R. Kalyani, S. C. Veerla, P. Kollu, U. Shameem, and S. Pammi. 2019. Biogenic synthesis of stable silver nanoparticles via Asparagus racemosus root extract and their antibacterial efficacy towards human and fish bacterial pathogens. Materials Research Express 6 (10):104008. doi:10.1088/2053-1591/ab3ce9.
  • Larson, R. A. 1988. The antioxidants of higher plants. Phytochemistry 27 (4):969–78. doi:10.1016/0031-9422(88)80254-1.
  • Le A., Le T. T., Nguyen V. Q., Tran H. H., Dang D. A., Tran Q. H. and Vu D. L. 2012. Powerful colloidal silver nanoparticles for the prevention of gastrointestinal bacterial infections. Advances in Natural Sciences: Nanoscience and Nanotechnology, 3(4), 045007 10.1088/2043-6262/3/4/045007
  • Li, S., S.-K. Li, R.-Y. Gan, F.-L. Song, L. Kuang, and H.-B. Li. 2013. Antioxidant capacities and total phenolic contents of infusions from 223 medicinal plants. Industrial Crops and Products 51:289–98. doi:10.1016/j.indcrop.2013.09.017.
  • Li, T., S. H. A. Raza, B. Yang, Y. Sun, G. Wang, W. Sun, A. Qian, C. Wang, Y. Kang, and X. Shan. 2020. Aeromonas veronii infection in commercial freshwater fish: A potential threat to public health. Animals 10 (4):608. doi:10.3390/ani10040608.
  • Li, J., M. Tang, and Y. Xue. 2019. Review of the effects of silver nanoparticle exposure on gut bacteria. Journal of Applied Toxicology 39 (1):27–37. doi:10.1002/jat.3729.
  • Lulijwa, R., E. J. Rupia, and A. C. Alfaro. 2020. Antibiotic use in aquaculture, policies and regulation, health and environmental risks: A review of the top 15 major producers. Reviews in Aquaculture 12 (2):640–63. doi:10.1111/raq.12344.
  • Lyu, S. and Park, W. 2005. Production of Cytokine and NO by RAW 264.7 Macrophages and PBMC In Vitro Incubation with Flavonoids. Archives of Pharmacal Research 28 (5):573–581. doi:10.1007/BF02977761.
  • Makarov, V., A. Love, O. Sinitsyna, S. Makarova, I. Yaminsky, M. Taliansky, and N. Kalinina. 2014. “Green” nanotechnologies: Synthesis of metal nanoparticles using plants. Acta Naturae (англоязычная версия) 6 (1): 35–44.
  • Martins, M., J. Mouriño, G. Amaral, F. Vieira, G. Dotta, A. Jatobá, F. Pedrotti, G. Jerônimo, and C. Buglione-Neto. 2008. Haematological changes in Nile tilapia experimentally infected with Enterococcus sp. Brazilian Journal of Biology 68 (3):657–61. doi:10.1590/S1519-69842008000300025.
  • Mie, R., M. W. Samsudin, L. B. Din, A. Ahmad, N. Ibrahim, and S. N. A. Adnan. 2014. Synthesis of silver nanoparticles with antibacterial activity using the lichen Parmotrema praesorediosum. International Journal of Nanomedicine 9:121. doi:10.2147/IJN.S52306.
  • Moatar, A. E., C. S. Vlad, D. C. Vlad, D. M. Verdes, M. N. Filimon, O. Bloju, F. Borcan, C. A. Dehelean, and V. Dumitrascu. 2020. Evaluation of antiproliferative potential of Myrmecodia pendans and its activity on IL-8 secretion in colon cancer cell. FARMACIA 68 (4):710–14. doi:10.31925/farmacia.2020.4.17.
  • Mohammadi, G., G. Rafiee, M. F. El Basuini, H. M. Abdel-Latif, and M. A. Dawood. 2020a. The growth performance, antioxidant capacity, immunological responses, and the resistance against Aeromonas hydrophila in Nile tilapia (Oreochromis niloticus) fed Pistacia vera hulls derived polysaccharide. Fish & Shellfish Immunology 106:36–43. doi:10.1016/j.fsi.2020.07.064.
  • Mohammadi, G., G. Rafiee, M. F. El Basuini, H. Van Doan, H. A. Ahmed, M. A. Dawood, and H. M. Abdel-Latif. 2020b. Oregano (Origanum vulgare), St John’s-wort (Hypericum perforatum), and lemon balm (Melissa officinalis) extracts improved the growth rate, antioxidative, and immunological responses in Nile tilapia (Oreochromis niloticus) infected with Aeromonas hydrophila. Aquaculture Reports 18:100445. doi:10.1016/j.aqrep.2020.100445.
  • Naseer, M., U. Aslam, B. Khalid, and B. Chen. 2020. Green route to synthesize Zinc Oxide Nanoparticles using leaf extracts of Cassia fistula and Melia azadarach and their antibacterial potential. Scientific Reports 10 (1):1–10. doi:10.1038/s41598-020-65949-3.
  • Nugroho, R. A., R. Aryani, W. D. C. Anggraini, E. H. Hardi, R. Rudianto, E. Kusumawati, S. Sudrajat, F. M. Nur, and H. Manurung. 2019. Dietary Terminalia catappa leaves reduced growth performance but increased hematological profiles and survival rate of Pangasianodon hypophthalmus, vol. 348, 1, USA: IOP Conference Series: Earth and Environmental Science: IOP Publishing. 012033.
  • Nugroho, R. A., N. Hindryawati, R. Aryani, H. Manurung, Y. P. Sari, D. D. Nurti, R. Rudianto, W. Prahastika, and F. Zahida. 2021. Biosynthesis of silver nanoparticles from aqueous extract of Myrmecodia pendans bulb. vol. 2331, 1. USA: AIP Conference Proceedings: AIP Publishing LLC. 050014.
  • Nugroho, R. A., H. Manurung, F. M. Nur, and W. Prahastika. 2017. Terminalia catappa L. extract improves survival, hematological profile and resistance to Aeromonas hydrophila in Betta sp. Fisheries & Aquatic Life 25:103–15.
  • Nugroho, R. A., H. Manurung, D. Saraswati, D. Ladyescha, and F. M. Nur. 2016. The effects of Terminalia catappa L. leaves extract on the water quality properties, survival and blood profile of ornamental fish (Betta Sp) cultured. Biosaintifika: Journal of Biology & Biology Education 8:240–47.
  • Odeyemi, O. A., A. Asmat, and G. Usup. 2021. Antibiotics resistance and putative virulence factors of Aeromonas hydrophila isolated from estuary. Journal of Microbiology, Biotechnology and Food Sciences 2021:1339–57.
  • Ovais, M., A. T. Khalil, M. Ayaz, I. Ahmad, S. K. Nethi, and S. Mukherjee. 2018. Biosynthesis of metal nanoparticles via microbial enzymes: A mechanistic approach. International Journal of Molecular Sciences 19 (12):4100. doi:10.3390/ijms19124100.
  • Pauzi, N. A., N. Mohamad, M. Azzam-Sayuti, I. S. M. Yasin, M. Z. Saad, N. S. Nasruddin, and M. N. A. Azmai. 2020. Antibiotic susceptibility and pathogenicity of Aeromonas hydrophila isolated from red hybrid tilapia (Oreochromis niloticus× Oreochromis mossambicus) in Malaysia. Veterinary World 13 (10):2166. doi:10.14202/vetworld.2020.2166-2171.
  • Radu, S., N. Ahmad, F. H. Ling, and A. Reezal. 2003. Prevalence and resistance to antibiotics for Aeromonas species from retail fish in Malaysia. International Journal of Food Microbiology 81 (3):261–66. doi:10.1016/S0168-1605(02)00228-3.
  • Rafique, M., I. Sadaf, M. S. Rafique, and M. B. Tahir. 2017. A review on green synthesis of silver nanoparticles and their applications. Artificial Cells, Nanomedicine and Biotechnology 45 (7):1272–91. doi:10.1080/21691401.2016.1241792.
  • Rajasekar, T., K. Karthika, G. Muralitharan, A. Maryshamya, S. Sabarika, S. Anbarasu, K. Revathy, N. Prasannabalaji, and S. Kumaran. 2020. Green synthesis of gold nanoparticles using extracellular metabolites of fish gut microbes and their antimicrobial properties. Brazilian Journal of Microbiology 51 (3):957–67. doi:10.1007/s42770-020-00263-8.
  • Rana, A., K. Yadav, and S. Jagadevan. 2020. A comprehensive review on green synthesis of nature-inspired metal nanoparticles: Mechanism, application and toxicity. Journal of Cleaner Production 272:122880. doi:10.1016/j.jclepro.2020.122880.
  • Rice-evans, C. A., N. J. Miller, P. G. Bolwell, P. M. Bramley, and J. B. Pridham. 1995. The relative antioxidant activities of plant-derived polyphenolic flavonoids. Free Radical Research 22 (4):375–83. doi:10.3109/10715769509145649.
  • Salem, S. S., and A. Fouda. 2021. Green synthesis of metallic nanoparticles and their prospective biotechnological applications: An overview. Biological Trace Element Research 199 (1): 344–370.
  • Sana, S. S., and L. K. Dogiparthi. 2018. Green synthesis of silver nanoparticles using Givotia moluccana leaf extract and evaluation of their antimicrobial activity. Materials Letters 226:47–51. doi:10.1016/j.matlet.2018.05.009.
  • Sanjaya, R. E., Y. Y. Tedjo, A. Kurniawan, Y.-H. Ju, A. Ayucitra, and S. Ismadji. 2014. Investigation on supercritical CO2 extraction of phenolic-phytochemicals from an epiphytic plant tuber (Myrmecodia pendans). Journal of CO2 Utilization 6:26–33. doi:10.1016/j.jcou.2014.03.001.
  • Sarker, U., S. Oba, and M. A. Daramy. 2020. Nutrients, minerals, antioxidant pigments and phytochemicals, and antioxidant capacity of the leaves of stem amaranth. Scientific Reports 10 (1):1–9. doi:10.1038/s41598-020-60252-7.
  • Shatoor, A. S. 2011. Acute and sub-acute toxicity of Crataegus Aronia Syn. Azarolus (L.) whole plant aqueous extract in wistar rats. American Journal of Pharmacology and Toxicology 6 (2):37–45. doi:10.3844/ajptsp.2011.37.45.
  • Sulaiman, G. M., W. H. Mohammed, T. R. Marzoog, A.-A. Aaa, A. A. H. Kadhum, and A. B. Mohamad. 2013. Green synthesis, antimicrobial and cytotoxic effects of silver nanoparticles using Eucalyptus chapmaniana leaves extract. Asian Pacific Journal of Tropical Biomedicine 3 (1):58–63. doi:10.1016/S2221-1691(13)60024-6.
  • Sur, U. K., B. Ankamwar, S. Karmakar, A. Halder, and P. Das. 2018. Green synthesis of silver nanoparticles using the plant extract of shikakai and reetha. Materials Today: Proceedings 5:2321–29.
  • Tepal, P. 2016. Phytochemical screening, total flavonoid and phenolic content assays of various solvent extracts of tepal of Musa paradisiaca. Malaysian Journal of Analytical Sciences 20 (5):1181–90. doi:10.17576/mjas-2016-2005-25.
  • Uboh, F. E., I. E. Okon, and M. B. Ekong. 2010. Effect of aqueous extract of Psidium guajava leaves on liver enzymes, histological integrity and hematological indices in rats. Gastroenterology Research 3 (1):32. doi:10.4021/gr2010.02.174w.
  • Umashankari, J., D. Inbakandan, T. T. Ajithkumar, and T. Balasubramanian. 2012. Mangrove plant, Rhizophora mucronata (Lamk, 1804) mediated one pot green synthesis of silver nanoparticles and its antibacterial activity against aquatic pathogens. Aquatic Biosystems 8 (1):11. doi:10.1186/2046-9063-8-11.
  • Valgas, C., S. SMd, E. F. Smânia, and J. A. Smânia. 2007. Screening methods to determine antibacterial activity of natural products. Brazilian Journal of Microbiology 38 (2):369–80. doi:10.1590/S1517-83822007000200034.
  • Varghese, K. J., N. Belzik, A. Nisha, S. Resiya, S. Resmi, and K. Silvipriya. 2010. Pharmacognostical and phytochemical studies of a mangrove (Sonneratia caseolaris) from Kochi of Kerala state in India. Journal of Pharmacy Research 3:2625–27.
  • Velmurugan, P., M. Iydroose, S.-M. Lee, M. Cho, J.-H. Park, V. Balachandar, and B.-T. Oh. 2014. Synthesis of silver and gold nanoparticles using cashew nut shell liquid and its antibacterial activity against fish pathogens. Indian Journal of Microbiology 54 (2):196–202. doi:10.1007/s12088-013-0437-5.
  • Widyawati, T., M. A. Pase, M. Daulay, I. B. Sumantri, and N. A. Yusoff. 2020. Evaluation of Myrmecodia pendans water extracts on hematology profiles, liver, kidney function and malondialdehyde level in healthy volunteer. Pharmacognosy Journal 12 (6s):1489–93. doi:10.5530/pj.2020.12.204.
  • Xiong, S.-L., D.-B. Hou, N. Huang, and A. Li. 2012. Preparation and biological activity of saponin from Ophiopogon japonicus. African Journal of Pharmacy and Pharmacology 6:1964–70.
  • Yousefi, M., H. Ghafarifarsani, S. H. Hoseinifar, G. Rashidian, and H. Van Doan. 2021. Effects of dietary marjoram, Origanum majorana extract on growth performance, hematological, antioxidant, humoral and mucosal immune responses, and resistance of common carp, Cyprinus carpio against Aeromonas hydrophila. Fish & Shellfish Immunology 108:127–33. doi:10.1016/j.fsi.2020.11.019.
  • Yu, H. B., P. S. S. Rao, H. C. Lee, S. Vilches, S. Merino, J. M. Tomas, and K. Y. Leung. 2004. A type III secretion system is required for Aeromonas hydrophila AH-1 Pathogenesis. Infection and Immunity 72 (3):1248–56. doi:10.1128/IAI.72.3.1248-1256.2004.
  • Zhang, D., and S. C. Xu D-H. 2016. Experimental induction of motile Aeromonas septicemia in channel catfish (Ictalurus punctatus) by waterborne challenge with virulent Aeromonas hydrophila. Aquaculture Reports 3:18–23. doi:10.1016/j.aqrep.2015.11.003.
  • Zuas, O., N. Hamim, and Y. Sampora. 2014. Bio-synthesis of silver nanoparticles using water extract of Myrmecodia pendan (Sarang Semut plant). Materials Letters 123:156–59. doi:10.1016/j.matlet.2014.03.026.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.