233
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Effectiveness of Bacillus as a probiotic to improve the growth, survival, and feed conversion ratio in aquaculture: a meta-analysis

, &

References

  • Abriouel, H., C. M. Franz, N. B. Omar, and A. Gálvez. 2011. Diversity and applications of Bacillus bacteriocins. FEMS Microbiology Reviews 35 (1):201–232. doi:10.1111/j.1574-6976.2010.00244.x.
  • Adineh, H., H. Jafaryan, J. Sahandi, and M. Alizadeh. 2013. Effect of Bacillus spp. probiotic on growth and feeding performance of rainbow trout (Oncorhynchus mykiss) larvae. Bulgarian Journal of Veterinary Medicine 16:29–36.
  • Aguilera-Rivera, D., A. Prieto-Davó, K. Escalante, C. Chávez, G. Cuzon, and G. Gaxiola. 2014. Probiotic effect of FLOC on vibrios in the pacific white shrimp litopenaeus vannamei. Aquaculture 424:215–19. doi:10.1016/j.aquaculture.2014.01.008.
  • Akhter, N., B. WU, A. M. Memon, and M. Mohsin. 2015. Probiotics and prebiotics associated with aquaculture: A review. Fish & Shellfish Immunology 45 (2):733–41. doi:10.1016/j.fsi.2015.05.038.
  • Amin, M., Z. Rakhisi, and A. Z. Ahmady. 2005. Identification of Bacillus species from soil and evaluation of their antibacterial properties. Avicenna Journal of Clinical Microbiology and Infection 2:10–13.
  • Arena, A., T. L. Maugeri, B. Pavone, D. Iannello, C. Gugliandolo, and G. Bisignano. 2006. Antiviral and immunoregulatory effect of a novel exopolysaccharide from a marine thermotolerant Bacillus licheniformis. International Immunopharmacology 6 (1):8–13. doi:10.1016/j.intimp.2005.07.004.
  • Balcázar, J. L., I. De Blas, I. Ruiz-Zarzuela, D. Cunningham, D. Vendrell, and J. L. Múzquiz. 2006. The role of probiotics in aquaculture. Veterinary Microbiology 114 (3–4):173–86. doi:10.1016/j.vetmic.2006.01.009.
  • Begg, C. B., and M. Mazumdar. 1994. Operating characteristics of a rank correlation test for publication bias. Biometrics 1088–101.
  • Ben, Y., C. Fu, M. Hu, L. Liu, M. H. Wong, and C. Zheng. 2019. Human health risk assessment of antibiotic resistance associated with antibiotic residues in the environment: A review. Environmental Research 169:483–93. doi:10.1016/j.envres.2018.11.040.
  • Boyd, C. E., L. R. D’abramo, B. D. Glencross, D. C. Huyben, L. M. Juarez, G. S. Lockwood, A. A. Mcnevin, A. G. Tacon, F. Teletchea, and J. R. Tomasso JR. 2020. Achieving sustainable aquaculture: Historical and current perspectives and future needs and challenges. Journal of the World Aquaculture Society 51 (3):578–633. doi:10.1111/jwas.12714.
  • Buruiană, C.-T., A. G. Profir, and C. Vizireanu. 2014. Effects of probiotic Bacillus species in aquaculture–an overview. The Annals of the University Dunarea de Jos of Galati Fascicle VI-Food Technology 38:9–17.
  • Chai, P.-C., X.-L. Song, G.-F. Chen, H. Xu, and J. Huang. 2016. Dietary supplementation of probiotic Bacillus PC465 isolated from the gut of fenneropenaeus chinensis improves the health status and resistance of litopenaeus vannamei against white spot syndrome virus. Fish & Shellfish Immunology 54:602–11. doi:10.1016/j.fsi.2016.05.011.
  • Chang, X., Y. Chen, J. Feng, M. Huang, and J. Zhang. 2021. Amelioration of Cd-induced bioaccumulation, oxidative stress and immune damage by probiotic Bacillus coagulans in common carp (Cyprinus carpio L.). Aquaculture Reports 20:100678. doi:10.1016/j.aqrep.2021.100678.
  • Cha, J.-H., S. Rahimnejad, S.-Y. Yang, K.-W. Kim, and K.-J. Lee. 2013. Evaluations of Bacillus spp. As dietary additives on growth performance, innate immunity and disease resistance of olive flounder (Paralichthys olivaceus) against streptococcus iniae and as water additives. Aquaculture 402:50–57. doi:10.1016/j.aquaculture.2013.03.030.
  • Costa-Pierce, B. A., A. B. Bockus, B. H. Buck, S. W. Van Den Burg, T. Chopin, J. G. Ferreira, N. Goseberg, K. G. Heasman, J. Johansen, and S. E. Shumway. 2021. A fishy story promoting a false dichotomy to policy-makers: It is not freshwater vs. Marine Aquaculture Reviews in Fisheries Science & Aquaculture 30 (4):429–46. doi:10.1080/23308249.2021.2014175.
  • Das, A., K. Nakhro, S. Chowdhury, and D. Kamilya. 2013. Effects of potential probiotic Bacillus amyloliquifaciens FPTB16 on systemic and cutaneous mucosal immune responses and disease resistance of catla (catla catla). Fish & Shellfish Immunology 35 (5):1547–53. doi:10.1016/j.fsi.2013.08.022.
  • Dharmaraj, R., and V. Rajendren. 2014. Probiotic assessment of Bacillus infantis isolated from gastrointestinal tract of labeo rohita. International Journal of Scientific and Research Publications 4:1–6.
  • Egger, M., G. D. Smith, M. Schneider, and C. Minder. 1997. Bias in meta-analysis detected by a simple, graphical test. BMJ 315 (7109):629–34. doi:10.1136/bmj.315.7109.629.
  • El-Saadony, M. T., M. Alagawany, A. K. Patra, I. Kar, R. Tiwari, M. A. Dawood, K. Dhama, and H. M. Abdel-Latif. 2021. The functionality of probiotics in aquaculture: An overview. Fish & Shellfish Immunology 117:36–52. doi:10.1016/j.fsi.2021.07.007.
  • Emam, A. M., and C. A. Dunlap. 2020. Genomic and phenotypic characterization of Bacillus velezensis AMB-y1; a potential probiotic to control pathogens in aquaculture. Antonie Van Leeuwenhoek 113 (12):2041–52. doi:10.1007/s10482-020-01476-5.
  • FAO. 2022. The state of world fisheries and aquaculture 2022. Rome: Towards Blue Transformation.
  • Ferreira, G. S., N. C. Bolivar, S. A. Pereira, C. Guertler, F. Do Nascimento Vieira, J. L. P. Mouriño, and W. Q. Seiffert. 2015. Microbial biofloc as source of probiotic bacteria for the culture of litopenaeus vannamei. Aquaculture 448:273–79. doi:10.1016/j.aquaculture.2015.06.006.
  • Gatesoupe, F. J. 1999. The use of probiotics in aquaculture. Aquaculture 180 (1–2):147–65. doi:10.1016/S0044-8486(99)00187-8.
  • Glass, G. V. 1976. Primary, secondary, and meta-analysis of research. Educational Researcher 5:3–8.
  • Gobi, N., B. Malaikozhundan, V. Sekar, S. Shanthi, B. Vaseeharan, R. Jayakumar, and A. K. Nazar. 2016. GFP tagged Vibrio parahaemolyticus Dahv2 infection and the protective effects of the probiotic Bacillus licheniformis Dahb1 on the growth, immune and antioxidant responses in pangasius hypophthalmus. Fish & Shellfish Immunology 52:230–38. doi:10.1016/j.fsi.2016.03.006.
  • Gobi, N., B. Vaseeharan, J.-C. Chen, R. Rekha, S. Vijayakumar, M. Anjugam, and A. Iswarya. 2018. Dietary supplementation of probiotic Bacillus licheniformis Dahb1 improves growth performance, mucus and serum immune parameters, antioxidant enzyme activity as well as resistance against Aeromonas hydrophila in tilapia Oreochromis mossambicus. Fish & Shellfish Immunology 74:501–08. doi:10.1016/j.fsi.2017.12.066.
  • Golder, H. M., A. A. S. Simon, E. Santigosa, M.-B. De Ondarza, and I. J. Lean. 2022. Effects of probiotic interventions on production efficiency, survival rate, and immune responses of shrimp: A meta-analysis and meta-regression. Aquaculture 552:737973. doi:10.1016/j.aquaculture.2022.737973.
  • Hai, N. 2015. The use of probiotics in aquaculture. Journal of Applied Microbiology 119 (4):449 917–935. doi:10.1111/jam.12886.
  • Harbord, R. M., R. J. Harris, and J. A. Sterne. 2009. Updated tests for small-study effects in meta-analyses. The Stata Journal 9 (2):197–210. doi:10.1177/1536867X0900900202.
  • Hedges, L. V. 1992. Meta-analysis. Journal of Educational Statistics 17 (4):279–96. doi:10.3102/10769986017004279.
  • Henriksson, P. J. G., M. Troell, L. K. Banks, B. Belton, M. C. M. Beveridge, D. H. Klinger, N. Pelletier, M. J. Phillips, and N. Tran. 2021. Interventions for improving the productivity and environmental performance of global aquaculture for future food security. One Earth 4 (9):1220–32. doi:10.1016/j.oneear.2021.08.009.
  • Higgins, J. P., and S. Green. 2008. Cochrane handbook for systematic reviews of interventions.
  • Higgins, J. P., and S. G. Thompson. 2002. Quantifying heterogeneity in a meta‐analysis. Statistics in Medicine 21 (11):1539–58. doi:10.1002/sim.1186.
  • Hlordzi, V., F. K. Kuebutornye, G. Afriyie, E. D. Abarike, Y. Lu, S. Chi, and M. A. Anokyewaa. 2020. The use of Bacillus species in maintenance of water quality in aquaculture: A review. Aquaculture Reports 18:100503. doi:10.1016/j.aqrep.2020.100503.
  • Hong, H. A., L. H. Duc, and S. M. Cutting. 2005. The use of bacterial spore formers as probiotics. FEMS Microbiology Reviews 29 (4):813–35. doi:10.1016/j.femsre.2004.12.001.
  • Hooper, L. V. 2015. Epithelial cell contributions to intestinal immunity. Advances in Immunology 126:129–72.
  • Hossain, A., M. Habibullah-AL-Mamun, I. Nagano, S. Masunaga, D. Kitazawa, and H. Matsuda. 2022. Antibiotics, antibiotic-resistant bacteria, and resistance genes in aquaculture: Risks, current concern, and future thinking. Environmental Science and Pollution Research 29 (8):11054–75. doi:10.1007/s11356-021-17825-4.
  • Iskratsch, T., A. Braun, K. Paschinger, and I. B. Wilson. 2009. Specificity analysis of lectins and antibodies using remodeled glycoproteins. Analytical Biochemistry 386 (2):133–46. doi:10.1016/j.ab.2008.12.005.
  • Knipe, H., B. Temperton, A. Lange, D. Bass, and C. R. Tyler. 2021. Probiotics and competitive exclusion of pathogens in shrimp aquaculture. Reviews in Aquaculture 13 (1):324–52. doi:10.1111/raq.12477.
  • Kongnum, K., and T. Hongpattarakere. 2012. Effect of Lactobacillus plantarum isolated from digestive tract of wild shrimp on growth and survival of white shrimp (litopenaeus vannamei) challenged with vibrio harveyi. Fish & Shellfish Immunology 32 (1):170–77. doi:10.1016/j.fsi.2011.11.008.
  • Kuebutornye, F. K., E. D. Abarike, and Y. LU. 2019. A review on the application of Bacillus as probiotics in aquaculture. Fish & Shellfish Immunology 87:820–28. doi:10.1016/j.fsi.2019.02.010.
  • Kuebutornye, F. K., E. D. Abarike, Y. Lu, V. Hlordzi, M. E. Sakyi, G. Afriyie, Z. Wang, Y. Li, and C. X. Xie. 2020. Mechanisms and the role of probiotic Bacillus in mitigating fish pathogens in aquaculture. Fish Physiology and Biochemistry 46 (3):819–41. doi:10.1007/s10695-019-00754-y.
  • Liberati, A., D. G. Altman, J. Tetzlaff, C. Mulrow, P. C. Gøtzsche, J. P. Ioannidis, M. Clarke, P. J. Devereaux, J. Kleijnen, and D. Moher. 2009. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: Explanation and elaboration. PLoS Medicine 6 (7):e1000100. doi:10.1371/journal.pmed.1000100.
  • Limbu, S. M., L. Q. Chen, M. L. Zhang, and Z. Y. Du. 2021. A global analysis on the systemic effects of antibiotics in cultured fish and their potential human health risk: A review. Reviews in Aquaculture 13 (2):1015–59. doi:10.1111/raq.12511.
  • Martínez Cruz, P., A. L. Ibáñez, O. A. Monroy Hermosillo, and H. C. Ramírez Saad. 2012. Use of probiotics in aquaculture. International Scholarly Research Notices 2012:1–13. doi:10.5402/2012/916845.
  • Ma, S., D. Yu, Q. Liu, M. Zhao, C. Xu, and J. Yu. 2022. Relationship between immune performance and the dominant intestinal microflora of turbot fed with different Bacillus species. Aquaculture 549:737625. doi:10.1016/j.aquaculture.2021.737625.
  • Md Noor, N., and S. N. Harun. 2022. Towards sustainable aquaculture: A brief look into management issues. Applied Sciences 12 (15):7448. doi:10.3390/app12157448.
  • Meidong, R., S. Doolgindachbaporn, W. Jamjan, K. Sakai, Y. Tashiro, Y. Okugawa, and S. Tongpim. 2017. A novel probiotic Bacillus siamensis B44v isolated from Thai pickled vegetables (phak-dong) for potential use as a feed supplement in aquaculture. The Journal of General and Applied Microbiology 63 (4):246–53. doi:10.2323/jgam.2016.12.002.
  • Merrifield, D. L., A. Dimitroglou, A. Foey, S. J. Davies, R. T. Baker, J. Bøgwald, M. Castex, and E. Ringø. 2010. The current status and future focus of probiotic and prebiotic applications for salmonids. Aquaculture 302 (1–2):1–18. doi:10.1016/j.aquaculture.2010.02.007.
  • Monzón-Atienza, L., J. Bravo, S. Torrecillas, D. Montero, A. F. G.-D. Canales, I. De La Banda, J. Galindo-Villegas, J. Ramos-Vivas, and F. Acosta. 2021. Isolation and characterization of a Bacillus velezensis D-18 strain, as a potential probiotic in European seabass aquaculture. Probiotics and Antimicrobial Proteins 13 (5):1404–12. doi:10.1007/s12602-021-09782-8.
  • Nakagawa, S., D. W. Noble, A. M. Senior, and M. Lagisz. 2017. Meta-evaluation of meta-analysis: ten appraisal questions for biologists. BMC Biology 15 (1):18. doi:10.1186/s12915-017-0357-7.
  • Nakagawa, S., and E. S. Santos. 2012. Methodological issues and advances in biological meta-analysis. Evolutionary Ecology 26 (5):1253–74. doi:10.1007/s10682-012-9555-5.
  • Nayak, S. K. 2010. Probiotics and immunity: A fish perspective. Fish & Shellfish Immunology 29 (1):2–14. doi:10.1016/j.fsi.2010.02.017.
  • Ninawe, A. S., and J. Selvin. 2009. Probiotics in shrimp aquaculture: Avenues and challenges. Critical Reviews in Microbiology 35 (1):43–66. doi:10.1080/10408410802667202.
  • Ochoa-Solano, J. L., and J. Olmos-Soto. 2006. The functional property of Bacillus for shrimp feeds. Food Microbiology 23 (6):519–25. doi:10.1016/j.fm.2005.10.004.
  • Olmos, J., and J. Paniagua-Michel. 2014. Bacillus subtilis a potential probiotic bacterium to formulate functional feeds for aquaculture. Journal of Microbial & Biochemical Technology 6 (7):361–65. doi:10.4172/1948-5948.1000169.
  • Pandiyan, P., D. Balaraman, R. Thirunavukkarasu, E. G. J. George, K. Subaramaniyan, S. Manikkam, and B. Sadayappan. 2013. Probiotics in aquaculture. Drug Invention Today 5 (1):55–59. doi:10.1016/j.dit.2013.03.003.
  • Pham, D., D. Ansquer, A. Chevalier, C. Dauga, A. Peyramale, N. Wabete, and Y. Labreuche. 2014. Selection and characterization of potential probiotic bacteria for litopenaeus stylirostris shrimp hatcheries in New Caledonia. Aquaculture 432:475–82. doi:10.1016/j.aquaculture.2014.04.031.
  • Preisser, E. L., D. I. Bolnick, and M. F. Benard. 2005. Scared to death? The effects of intimidation and consumption in predator–prey interactions. Ecology 86 (2):501–09. doi:10.1890/04-0719.
  • Rahimi, R., S. A. Mirahmadi, S. Hajirezaee, and A. A. Fallah. 2022. How probiotics impact on immunological parameters in rainbow trout (Oncorhynchus mykiss)? A systematic review and meta-analysis. Reviews in Aquaculture 14 (1):27–53. doi:10.1111/raq.12582.
  • Rasul, M., and B. Majumdar. 2017. Abuse of antibiotics in aquaculture and it’s effects on human, aquatic animal and environment. The Saudi Journal of Life Sciences 2:81–88.
  • Reda, R. M., and K. M. Selim. 2015. Evaluation of Bacillus amyloliquefaciens on the growth performance, intestinal morphology, hematology and body composition of Nile tilapia, Oreochromis niloticus. Aquaculture International 23 (1):203–17. doi:10.1007/s10499-014-9809-z.
  • Reneshwary, C., M. Rajalakshmi, K. Marimuthu, and R. Xavier. 2011. Dietary administration of Bacillus thuringiensis on the cellular innate immune response of African catfish (clarias gariepinus) against Aeromonas hydrophila. Frontiers in Microbiology 15:53–60.
  • Romero, J., C. G. Feijoó, and P. Navarrete. 2012. Antibiotics in aquaculture–use, abuse and alternatives. Health and Environment in Aquaculture 159:159–98.
  • Sadat Hoseini Madani, N., T. J. Adorian, H. Ghafari Farsani, and S. H. Hoseinifar. 2018. The effects of dietary probiotic bacilli (Bacillus subtilis and Bacillus licheniformis) on growth performance, feed efficiency, body composition and immune parameters of whiteleg shrimp (litopenaeus vannamei) postlarvae. Aquaculture Research 49 (5):1926–33. doi:10.1111/are.13648.
  • Sahu, M. K., N. Swarnakumar, K. Sivakumar, T. Thangaradjou, and L. Kannan. 2008. Probiotics in aquaculture: Importance and future perspectives. Indian Journal of Microbiology 48 (3):299–308. doi:10.1007/s12088-008-0024-3.
  • Santos, L., and F. Ramos. 2016. Analytical strategies for the detection and quantification of antibiotic residues in aquaculture fishes: A review. Trends in Food Science & Technology 52:16–30. doi:10.1016/j.tifs.2016.03.015.
  • Sonenshein, A. L., J. A. Hoch, and R. Losick. 1993. Bacillus subtilis and other gram-positive bacteria: Biochemistry, physiology, and molecular genetics. Washington, D.C: American Society for Microbiology.
  • Standen, B., A. Rodiles, D. Peggs, S. Davies, G. Santos, and D. Merrifield. 2015. Modulation of the intestinal microbiota and morphology of tilapia, Oreochromis niloticus, following the application of a multi-species probiotic. Applied Microbiology and Biotechnology 99 (20):8403–17. doi:10.1007/s00253-015-6702-2.
  • Steenson, S., and A. Creedon. 2022. Plenty more fish in the sea?–is there a place for seafood within a healthier and more sustainable diet? Nutrition Bulletin 47 (2):261–73. doi:10.1111/nbu.12553.
  • Sterne, J. A., A. J. Sutton, J. P. Ioannidis, N. Terrin, D. R. Jones, J. Lau, J. Carpenter, G. Rücker, R. M. Harbord, and C. H. Schmid. 2011. Recommendations for examining and interpreting funnel plot asymmetry in meta-analyses of randomised controlled trials. BMJ 343 (jul22 1):d4002. doi:10.1136/bmj.d4002.
  • Sugita, H., C. Miyajima, and Y. Deguchi. 1991. The vitamin B12-producing ability of the intestinal microflora of freshwater fish. Aquaculture 92:267–76. doi:10.1016/0044-8486(91)90028-6.
  • Sugita, H., J. Takahashi, and Y. Deguchi. 1992. Production and consumption of biotin by the intestinal microflora of cultured freshwater fishes. Bioscience, Biotechnology, and Biochemistry 56 (10):1678–79. doi:10.1271/bbb.56.1678.
  • Tacon, A. G. 2020. Trends in global aquaculture and aquafeed production: 2000–2017. Reviews in Fisheries Science & Aquaculture 28 (1):43–56. doi:10.1080/23308249.2019.1649634.
  • Tamilarasu, A., B. Ahilan, A. Gopalakannan, and R. Somu Sunder Lingam. 2021. Evaluation of probiotic potential of Bacillus strains on growth performance and physiological responses in Penaeus vannamei. Aquaculture Research 52 (7):3124–36. doi:10.1111/are.15159.
  • Tapia-Paniagua, S., S. Vidal, C. Lobo, M. Prieto-Álamo, J. Jurado, H. Cordero, R. Cerezuela, I. G. De La Banda, M. Esteban, and M. Balebona. 2014. The treatment with the probiotic shewanella putrefaciens Pdp11 of specimens of Solea senegalensis exposed to high stocking densities to enhance their resistance to disease. Fish & Shellfish Immunology 41 (2):209–21. doi:10.1016/j.fsi.2014.08.019.
  • Thurlow, C. M., M. A. Williams, A. Carrias, C. Ran, M. Newman, J. Tweedie, E. Allison, L. N. Jescovitch, A. E. Wilson, and J. S. Terhune. 2019. Bacillus velezensis AP193 exerts probiotic effects in channel catfish (Ictalurus punctatus) and reduces aquaculture pond eutrophication. Aquaculture 503:347–56. doi:10.1016/j.aquaculture.2018.11.051.
  • Thy, H. T. T., N. N. Tri, O. M. Quy, R. Fotedar, K. Kannika, S. Unajak, and N. Areechon. 2017. Effects of the dietary supplementation of mixed probiotic spores of Bacillus amyloliquefaciens 54A, and Bacillus pumilus 47B on growth, innate immunity and stress responses of striped catfish (pangasianodon hypophthalmus). Fish & Shellfish Immunology 60:391–99. doi:10.1016/j.fsi.2016.11.016.
  • Toledo, A., L. Frizzo, M. Signorini, P. Bossier, and A. Arenal. 2019. Impact of probiotics on growth performance and shrimp survival: A meta-analysis. Aquaculture 500:196–205. doi:10.1016/j.aquaculture.2018.10.018.
  • Van Hai, N., N. Buller, and R. Fotedar. 2009. The use of customised probiotics in the cultivation of western king prawns (Penaeus latisulcatus Kishinouye, 1896). Fish & Shellfish Immunology 27 (2):100–04. doi:10.1016/j.fsi.2009.05.004.
  • Varela, J., I. Ruiz-Jarabo, L. Vargas-Chacoff, S. Arijo, J. León-Rubio, I. García-Millán, M. M. Del Río, M. Moriñigo, and J. Mancera. 2010. Dietary administration of probiotic Pdp11 promotes growth and improves stress tolerance to high stocking density in gilthead Seabream Sparus auratus. Aquaculture 309 (1–4):265–71. doi:10.1016/j.aquaculture.2010.09.029.
  • Vazquez, L., J. Alpuche, G. Maldonado, C. Agundis, A. Pereyra-Morales, and E. Zenteno. 2009. Review: Immunity mechanisms in crustaceans. Innate Immunity 15 (3):179–88. doi:10.1177/1753425909102876.
  • Verschuere, L., G. Rombaut, P. Sorgeloos, and W. Verstraete. 2000. Probiotic bacteria as biological control agents in aquaculture. Microbiology and Molecular Biology Reviews 64 (4):655–71. doi:10.1128/MMBR.64.4.655-671.2000.
  • Viechtbauer, W. 2010. Conducting meta-analyses in R with the metafor package. Journal of Statistical Software 36 (3):1–48. doi:10.18637/jss.v036.i03.
  • Vieira, F. D. N., A. Jatobá, J. L. P. Mouriño, C. C. Buglione NETO, J. S. D. Silva, W. Q. Seiffert, M. Soares, and L. A. Vinatea. 2016. Use of probiotic- supplemented diet on a Pacific white shrimp farm. Revista Brasileira de Zootecnia 45 (5):203–07. doi:10.1590/S1806-92902016000500001.
  • Vine, N. G., W. D. Leukes, and H. Kaiser. 2006. Probiotics in marine larviculture. FEMS Microbiology Reviews 30 (3):404–27. doi:10.1111/j.1574-6976.2006.00017.x.
  • Wang, Y., L. Fu, and J. Lin. 2012. Probiotic (Bacillus coagulans) cells in the diet benefit the white shrimp litopenaeus vannamei. Journal of Shellfish Research 31 (3):855–60. doi:10.2983/035.031.0333.
  • Wang, A., C. Ran, Y. Wang, Z. Zhang, Q. Ding, Y. Yang, R. E. Olsen, E. Ringø, J. Bindelle, and Z. Zhou. 2019. Use of probiotics in aquaculture of China—a review of the past decade. Fish & Shellfish Immunology 86:734–55. doi:10.1016/j.fsi.2018.12.026.
  • Yang, H. L., Z. Y. Liu, J. T. Jian, J. D. Ye, and Y. Z. Sun. 2021. Host-associated Bacillus siamensis and Lactococcus petauri improved growth performance, innate immunity, antioxidant activity and ammonia tolerance in juvenile Japanese seabass (Lateolabrax japonicus). Aquaculture Nutrition 27 (6):2739–48. doi:10.1111/anu.13399.
  • Yang, C., G. Song, and W. Lim. 2020. A review of the toxicity in fish exposed to antibiotics. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology 237:108840. doi:10.1016/j.cbpc.2020.108840.
  • Zhang, Q., B. Tan, K. Mai, W. Zhang, H. Ma, Q. Ai, X. Wang, and Z. Liufu. 2011. Dietary administration of Bacillus (B. licheniformis and B. subtilis) and isomaltooligosaccharide influences the intestinal microflora, immunological parameters and resistance against vibrio alginolyticus in shrimp, Penaeus japonicus (Decapoda: Penaeidae). Aquaculture Research 42:943–52. doi:10.1111/j.1365-2109.2010.02677.x.
  • Zhou, L., S. M. Limbu, F. Qiao, Z.-Y. Du, and M. Zhang. 2018. Influence of long-term feeding antibiotics on the gut health of zebrafish. Zebrafish 15 (4):340–48. doi:10.1089/zeb.2017.1526.
  • Zokaeifar, H., J. L. Balcázar, C. R. Saad, M. S. Kamarudin, K. Sijam, A. Arshad, and N. Nejat. 2012. Effects of Bacillus subtilis on the growth performance, digestive enzymes, immune gene expression and disease resistance of white shrimp, litopenaeus vannamei. Fish & Shellfish Immunology 33 (4):683–9. 652. doi:10.1016/j.fsi.2012.05.027.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.