63
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Effect of pH, osmolality, Na+ and K+ on spermatozoa motility of the orange-spotted grouper, Epinephelus coioides

, , &

References

  • Alam, M. A., R. K. Bhandari, Y. Kobayashi, K. Soyano, and M. Nakamura. 2006. Induction of sex change within two full moons during breeding season and spawning in grouper. Aquaculture 255 (1–4):532–535. doi:10.1016/j.aquaculture.2006.01.008.
  • Alavi, S. M. H., and J. Cosson. 2005. Sperm motility in fishes. I. Effects of temperature and pH: A review. Cell Biology International 29 (2):101–10. doi:10.1016/j.cellbi.2004.11.021.
  • Alavi, S. M. H., and J. Cosson. 2006. Sperm motility in fishes. (II) Effects of ions and osmolality: A review. Cell Biology International 30 (1):1–14. doi:10.1016/j.cellbi.2005.06.004.
  • Alavi, S. M. H., J. Cosson, O. Bondarenko, and O. Linhart. 2019. Sperm motility in fishes: (III) diversity of regulatory signals from membrane to the axoneme. Theriogenology 136:143–65. doi:10.1016/j.theriogenology.2019.06.038.
  • Alavi, S. M. H., D. Gela, M. Rodina, and O. Linhart. 2011. Roles of osmolality, calcium — Potassium antagonist and calcium in activation and flagellar beating pattern of sturgeon sperm. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology 160 (2):166–74. doi:10.1016/j.cbpa.2011.05.026.
  • Alavi, S. M. H., M. Rodina, T. Policar, and O. Linhart. 2009. Relationship between semen characteristics and body size in barbus barbus L. (Teleostei: Cyprinidae) and effects of ions and osmolality on sperm motility. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology 153 (4):430–37. doi:10.1016/j.cbpa.2009.04.001.
  • Billard, R., J. Cosson, and L. W. Crim. 1993. Motility of fresh and aged halibut sperm. Aquatic Living Resources 6 (1):67–75. doi:10.1051/alr:1993008.
  • Billard, R., J. Cosson, L. Crim, and M. Suquet. 1995. Sperm physiology and quality. In Broodstock management and egg and larval quality, ed. N. Bromage and R. Roberts, 25–52. Blackwell, Oxford: Wiley.
  • Boj, M., F. Chauvigné, and J. Cerdà. 2015. Coordinated action of Aquaporins regulates sperm motility in a marine teleost. Biology of Reproduction 93 (2):40, 1–11. doi:10.1095/biolreprod.115.131524.
  • Bondarenko, V., and J. Cosson. 2019. Structure and beating behavior of the sperm motility apparatus in aquatic animals. Theriogenology 35:152–63. doi:10.1016/j.theriogenology.2019.06.005.
  • Castro-Arnau, J., F. Chauvigné, and J. Cerdà. 2022. Role of ion channels in the maintenance of sperm motility and swimming behavior in a marine teleost. International Journal of Molecular Sciences 23 (20):12113. doi:10.3390/ijms232012113.
  • Chauvaud, L., J. Cosson, M. Suquet, and R. Billard. 1995. Sperm motility in turbot, scophthalmus marimus: Initiation of movement and changes with time of swimming characteristics. Environmental Biology of Fishes 43 (4):341–49. doi:10.1007/BF00001167.
  • Ciereszko, A., J. Glogowski, and K. Dabrowski. 2000. Biochemical characteristics of seminal plasma and spermatozoa of freshwater fishes. In Cryopreservation in Aquatic Species, ed. T. R. Tiersch, and P. M. Mazik, 20–48. Baton Rouge: World Aquaculture Society.
  • Cosson, J. 2004. The ionic and osmotic factors controlling motility of fish spermatozoa. Aquaculture International 12 (1):69–85. doi:10.1023/B:AQUI.0000017189.44263.bc.
  • Cosson, J., A. Groison, M. Suquet, C. Fauvel, C. Dreanno, and R. Billard. 2008. Studying sperm motility in marine fish: An overview on the state of the art. Journal of Applied Ichthyology 24 (4):460–86. doi:10.1111/j.1439-0426.2008.01151.x.
  • Darszon, A., T. Nishigaki, C. Beltran, and C. L. Treviño. 2011. Calcium channels in the development, maturation, and function of spermatozoa. Physiological Review 91 (4):1305–55. doi:10.1152/physrev.00028.2010.
  • Dzyuba, V., and J. Cosson. 2014. Motility of fish spermatozoa: From external signaling to flagella response. Reproductive Biology 14 (3):165–75. doi:10.1016/j.repbio.2013.12.005.
  • Fechner, S., L. Alvarez, W. Bönigk, A. Müller, T. K. Berger, R. Pascal, C. Trötschel, A. Poetsch, G. Stölting, K. R. Siegfried, et al. 2015. A K±selective CNG channel orchestrates Ca2+ signalling in zebrafish sperm. Elife 4:e07624. doi:10.7554/eLife.07624.
  • Gallis, J., E. Fedrigo, P. Jatteau, E. Bonpunt, and R. Billard. 1991. Siberian sturgeon, acipenser baeri, spermatozoa: Effects of dilution, pH, osmotic pressure, sodium and potassium ions on motility. In Acipencer, ed. P. Williot, 143–51. Bordeaux: CEMAGREF publication.
  • Gatti, J. L., R. Billard, and R. Christen. 1990. Ionic regulation of the plasma membrane potential of rainbow trout (salmo gairdneri) spermatozoa: Role in the initiation of sperm motility. Journal of Cellular Physiology 143 (3):546–54. doi:10.1002/jcp.1041430320.
  • Gwo, J. C. 1995. Ultrastructural study of osmolality effect on spermatozoa of three marine teleosts. Tissue and Cell 27 (5):491–97. doi:10.1016/S0040-8166(05)80057-6.
  • Gwo, J. C., H. Kurokura, and R. Hirano. 1993. Cryopreservation of spermatozoa from rainbow trout, common carp, and marine puffer. Bulletin of the Japanese Society of Scientific Fisheries 59 (5):777–82. doi:10.2331/suisan.59.777.
  • Ingerman, R., M. Holcomb, M. Robinson, and J. Cloud. 2002. Carbon dioxide and pH affect sperm motility of white sturgeon (acipenser transmontanus). The Journal of Experimental Biology 205 (18):2885–90. doi:10.1242/jeb.205.18.2885.
  • Kiriyakit, A., W. G. Gallardo, and A. N. Bart. 2011. Successful hybridization of groupers (Epinephelus coioides x Epinephelus lanceolatus) using cryopreserved sperm. Aquaculture 320 (1–2):106–12. doi:10.1016/j.aquaculture.2011.05.012.
  • Krasznai, Z., T. Márián, H. Izumi, S. Damjanovich, L. Balkay, L. Trón, and M. Morisawa. 2000. Membrane hyperpolarization removes inactivation of Ca2+ channels, leading to Ca2+ influx and subsequent initiation of sperm motility in the common carp. Proceedings of the National Academy of Sciences 97 (5):2052–57. doi:10.1073/pnas.040558097.
  • Krasznai, Z., M. Morisawa, Z. T. Krasznai, S. Morisawa, K. Inaba, Z. K. Bazsane, B. Rubovszky, B. Bodnar, A. Borsos, and T. Marian. 2003. Gadolinium, a mechano‐sensitive channel blocker, inhibits osmosis‐initiated motility of sea‐and freshwater fish sperm, but does not affect human or ascidian sperm motility. Cell Motility and the Cytoskeleton 55 (4):232–43. doi:10.1002/cm.10125.
  • Krasznai, Z., M. Morisawa, S. Morisawa, Z. T. Krasznai, L. Trón, R. Gáspár, and T. Márián. 2003. Role of ion channels and membrane potential in the initiation of carp sperm motility. Aquatic Living Resources 16 (5):445–49. doi:10.1016/S0990-7440(03)00054-8.
  • Linhart, O., J. Walford, B. Sivaloganathan, and T. Lam. 1999. Effects of osmolality and ions on the motility of stripped and testicular sperm of freshwater-and seawater-acclimated tilapia, oreochromis mossambicus. Journal of Fish Biology 55 (6):1344–58. doi:10.1111/j.1095-8649.1999.tb02080.x.
  • Liu, M., and Y. S. De Mitcheson. 2009. Gonad development during sexual differentiation in hatchery-produced orange-spotted grouper (Epinephelus coioides) and humpback grouper (cromileptes altivelis) (pisces: Serranidae, epinephelinae). Aquaculture 287 (1–2):191–202. doi:10.1016/j.aquaculture.2008.10.027.
  • Oda, S., and M. Morisawa. 1993. Rises of intracellular Ca2+ and pH mediate the initiation of sperm motility by hyperosmolality in marine teleosts. Cell Motility and the Cytoskeleton 25 (2):171–78. doi:10.1002/cm.970250206.
  • Peatpisut, T., and A. N. Bart. 2010. Cryopreservation of sperm from natural and sex‐reversed orange‐spotted grouper (Epinephelus coioides). Aquaculture Research 42 (1):22–30. doi:10.1111/j.1365-2109.2010.02488.x.
  • Perchec-Poupard, G., J. L. Gatti, J. Cosson, C. Jeulin, F. Fierville, and R. Billard. 1997. Effects of extracellular environment on the osmotic signal transduction involved inactivation of motility of carp spermatozoa. Journal of Reproduction and Fertility 110 (2):315–27. doi:10.1530/jrf.0.1100315.
  • Pérez, L., V. Gallego, and J. F. Asturiano. 2020. Intracellular pH regulation and sperm motility in the European eel. Theriogenology 145:48–58. doi:10.1016/j.theriogenology.2020.01.026.
  • Rafati, N., J. Chen, A. Herpin, M. E. Pettersson, F. Han, C. Feng, O. Wallerman, C. J. Rubin, S. Péron, A. Cocco, et al. 2020. Reconstruction of the birth of a male sex chromosome present in Atlantic herring. Proceeding of National Academy of Sciences, USA 2020. 117(39):24359–68. doi:10.1073/pnas.2009925117.
  • Vílchez, M. C., M. Morini, D. S. Peñaranda, V. Gallego, J. F. Asturiano, and L. Pérez. 2016. Sodium affects the sperm motility in the European eel. Comparative Biochemistry & Physiology Part A, Molecular & Integrative Physiology 198:51–58. doi:10.1016/j.cbpa.2016.04.008.
  • Wang, Z., and L. Crim. 1997. Seasonal changes in the biochemistry of seminal plasma and sperm motility in the ocean pout, macrozoarces americanus. Fish Physiology and Biochemistry 16 (1):77–83. doi:10.1007/BF00004542.
  • Yeh, S. L., C. M. Kuo, Y. Y. Ting, and C. F. Chang. 2003a. Androgens stimulate sex change in protogynous grouper, Epinephelus coioides: Spawning performance in sex-changed males. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology 135 (3):375–82. doi:10.1016/S1532-0456(03)00136-4.
  • Yeh, S. L., C. M. Kuo, Y. Y. Ting, and C. F. Chang. 2003b. The effects of exogenous androgens on ovarian development and sex change in female orange-spotted protogynous grouper, Epinephelus coioides. Aquaculture 218 (1–4):729–39. doi:10.1016/S0044-8486(02)00565-3.
  • Zhao, H., X. Liu, H. Lin, Y. Liufu, and Y. Wang. 2003. Ultrastructure of spermatozoa and effects of salinity, temperature and pH on spermatozoa motility in Epiniphelus coioides. Journal of Fishery Sciences of China 10:286–92.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.