61
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Thymus atlanticus Supplementation Attenuates Hepatic Steatosis in High-Fat Diet Fed Guinea Pigs

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 26-38 | Received 06 Jun 2023, Published online: 21 Aug 2023

References

  • Loomba, R.; Friedman, S. L.; Shulman, G. I. Mechanisms and Disease Consequences of Nonalcoholic Fatty Liver Disease. Cell. 2021, 184(10), 2537–2564. DOI: 10.1016/j.cell.2021.04.015.
  • Maurice, J.; Manousou, P. Non-Alcoholic Fatty Liver Disease. Clin. Med. 2018, 18(3), 245–250. DOI: 10.7861/clinmedicine.18-3-245.
  • Han, A.; Zhang, Y. N.; Boehringer, A. S.; Montes, V.; Andre, M. P.; Erdman, J. W.; Loomba, R.; Valasek, M. A.; Sirlin, C. B.; O’Brien, W. D., et al. Assessment of Hepatic Steatosis in Nonalcoholic Fatty Liver Disease by Using Quantitative US. Radiology. 2020, 295(1), 106–113.
  • Veena, J.; Muragundla, A.; Sidgiddi, S.; Subramaniam, S. Non-Alcoholic Fatty Liver Disease: Need for a Balanced Nutritional Source. Br. J. Nutr. 2014, 112(11), 1858–1872. DOI: 10.1017/S0007114514002591.
  • Zelber-Sagi, S.; Ratziu, V.; Oren, R. Nutrition and Physical Activity in NAFLD: An Overview of the Epidemiological Evidence. World J. Gastroenterol. 2011, 17(29), 3377–3389. DOI: 10.3748/wjg.v17.i29.3377.
  • Zhao, Y.; Qu, H.; Wang, Y.; Xiao, W.; Zhang, Y.; Shi, D. Small Rodent Models of Atherosclerosis. Biomed. Pharmacother. 2020, 129, 110426. DOI: 10.1016/j.biopha.2020.110426.
  • Cheah, I. K.; Tang, R.; Ye, P.; Yew, T. S. Z.; Lim, K. H. C.; Halliwell, B. Liver Ergothioneine Accumulation in a Guinea Pig Model of Non-Alcoholic Fatty Liver Disease. A Possible Mechanism of Defence? Free Radic. Res. 2016, 50(1), 14–25. DOI: 10.3109/10715762.2015.1099642.
  • Tveden-Nyborg, P.; Birck, M. M.; Ipsen, D. H.; Thiessen, T.; de Bie Feldmann, L.; Lindblad, M. M.; Jensen, H. E.; Lykkesfeldt, J. Diet-Induced Dyslipidemia Leads to Nonalcoholic Fatty Liver Disease and Oxidative Stress in Guinea Pigs. Transl. Res. 2016, 168, 146–160. DOI: 10.1016/j.trsl.2015.10.001.
  • Küskü-Kiraz, Z.; Genc, S.; Bekpınar, S.; Ünlücerci, Y.; Çevik, A.; Olgaç, V.; Gürdöl, F.; Uysal, M. Effects of Betaine Supplementation on Nitric Oxide Metabolism, Atherosclerotic Parameters, and Fatty Liver in Guinea Pigs Fed a High Cholesterol Plus Methionine Diet. Nutrition. 2018, 45, 41–48. DOI: 10.1016/j.nut.2017.07.005.
  • Khouya, T.; Ramchoun, M.; Amrani, S.; Harnafi, H.; Rouis, M.; Couchie, D.; Simmet, T.; Alem, C. Anti-Inflammatory and Anticoagulant Effects of Polyphenol-Rich Extracts from Thymus Atlanticus: An in vitro and in vivo Study. J. Ethnopharmacol. 2020, 252, 112475. DOI: 10.1016/j.jep.2019.112475.
  • Khouya, T.; Ramchoun, M.; Hmidani, A.; Bouhlali, E. D. T.; Amrani, S.; Alem, C. Phytochemical Analysis and Bioactivity Evaluation of Moroccan Thymus Atlanticus (Ball) Fractions. Sci. Afr. 2021, 11, e00716. DOI: 10.1016/j.sciaf.2020.e00689.
  • Abdelbassat, H.; Bouhlali, E. D. T.; Khouya, T.; Ramchoun, M.; Zegzouti, Y.; Alem, C.; Benlyas, M. Antioxidant, Anti-Inflammatory and Anticoagulant Activities of Three Thymus Species Grown in Southeastern Morocco. Future J. Pharm. Sci. 2019, 5(1), 5. DOI: 10.1186/s43094-019-0005-x.
  • Hmidani, A.; Khouya, T.; Ramchoun, M.; Filali-zegzouti, Y.; Benlyas, M.; Alem, C. Effect of Extraction Methods on Antioxidant and Anticoagulant Activities of Thymus Atlanticus Aerial Part. Sci. Afr. 2019, 5, e00143. DOI: 10.1016/j.sciaf.2019.e00143.
  • Elbouny, H.; Ouahzizi, B.; Sellam, K.; Alem, C. Hypolipidemic Effect of Thymus Munbyanus Subsp. Ciliatus Greuter & Burdet.: Guinea Pig as a Model for Tyloxapol-Induced Hyperlipidemia. J. Biol. Act. Prod. Nat. 2022, 12(6), 507–513. DOI: 10.1080/22311866.2022.2162580.
  • Ramchoun, M.; Khouya, T.; Harnafi, H.; Amrani, S.; Alem, C.; Benlyas, M.; Kasbi Chadli, F.; Nazih, E.-H.; Nguyen, P.; Ouguerram, K., et al. Effect of Aqueous Extract and Polyphenol Fraction Derived from Thymus Atlanticus Leaves on Acute Hyperlipidemia in the Syrian Golden Hamsters. Evid. Based Complement. Alternat. Med. 2020, 2020, 1–9. DOI: 10.1155/2020/3282596.
  • Ramchoun, M.; Khouya, T.; Alibrahim, E.; Abdelbassat, H.; Sellam, K.; Amrani, S.; Harnafi, H.; Benlyas, M.; Kasbi Chadli, F.; Ouguerram, K., et al. Thymus Atlanticus Polyphenol-Rich Extract Regulates Cholesterol Metabolism by Inhibiting Its Biosynthesis without Affecting Its Excretion in Hamsters Fed a High-Fat Diet. Arch. Physiol. Biochem. 2020, 129(3), 618–625.
  • Bekkouch, O.; Dalli, M.; Harnafi, M.; Touiss, I.; Mokhtari, I.; Assri, S. E.; Harnafi, H.; Choukri, M.; Ko, S.-J.; Kim, B., et al. Ginger (Zingiber Officinale Roscoe), Lemon (Citrus Limon L.) Juices as Preventive Agents from Chronic Liver Damage Induced by CCl4: A Biochemical and Histological Study. Antioxidants. 2022, 11(2), 390.
  • Podell, B. K.; Ackart, D. F.; Richardson, M. A.; DiLisio, J. E.; Pulford, B.; Basaraba, R. J. A Model of Type 2 Diabetes in the Guinea Pig Using Sequential Diet-Induced Glucose Intolerance and Streptozotocin Treatment. Dis. Models Mech. 2017, dmm.025593. DOI: 10.1242/dmm.025593.
  • Ipsen, D. H.; Tveden-Nyborg, P.; Rolin, B.; Rakipovski, G.; Beck, M.; Mortensen, L. W.; Færk, L.; Heegaard, P. M. H.; Møller, P.; Lykkesfeldt, J., et al. High-Fat but Not Sucrose Intake is Essential for Induction of Dyslipidemia and Non-Alcoholic Steatohepatitis in Guinea Pigs. Nutr. Metab. 2016, 13(1), 1–10.
  • Yang, R.; Guo, P.; Song, X.; Liu, F.; Gao, N. Hyperlipidemic Guinea Pig Model: Mechanisms of Triglyceride Metabolism Disorder and Comparison to Rat. Biol. Pharm. Bull. 2011, 34(7), 1046–1051. DOI: 10.1248/bpb.34.1046.
  • Chawda, H. M.; Mandavia, D. R.; Parmar, P. H.; Baxi, S. N.; Tripathi, C. R. Hypolipidemic Activity of a Hydroalcoholic Extract of Cyperus Scariosus Linn. Root in Guinea Pigs Fed with a High Cholesterol Diet. Chin. J. Nat. Med. 2014, 12(11), 819–826. DOI: 10.1016/S1875-5364(14)60123-0.
  • Deng, Z.; Gao, S.; An, Y.; Huang, Y.; Liu, H.; Zhu, W.; Lu, W.; He, M.; Xie, W.; Yu, D., et al. Effects of Earthworm Extract on the Lipid Profile and Fatty Liver Induced by a High-Fat Diet in Guinea Pigs. Ann. Transl. Med. 2021, 9(4), 292.
  • Sarr, O.; Mathers, K. E.; Zhao, L.; Dunlop, K.; Chiu, J.; Guglielmo, C. G.; Bureau, Y.; Cheung, A.; Raha, S.; Lee, T.-Y., et al. Western Diet Consumption Through Early Life Induces Microvesicular Hepatic Steatosis in Association with an Altered Metabolome in Low Birth Weight Guinea Pigs. J. Nutr Biochem. 2019, 67, 219–233. DOI: 10.1016/j.jnutbio.2019.02.009.
  • Ipsen, D. H.; Agerskov, R. H.; Klaebel, J. H.; Lykkesfeldt, J.; Tveden-Nyborg, P. The Development of Nonalcoholic Steatohepatitis is Subjected to Breeder Dependent Variation in Guinea Pigs. Sci. Rep. 2021, 11(1), 2955. DOI: 10.1038/s41598-021-82643-0.
  • Podszun, M. C.; Grebenstein, N.; Spruss, A.; Schlueter, T.; Kremoser, C.; Bergheim, I.; Frank, J. Dietary α-Tocopherol and Atorvastatin Reduce High-Fat-Induced Lipid Accumulation and Down-Regulate CD36 Protein in the Liver of Guinea Pigs. J. NUTR BIOCHEM. 2014, 25(5), 573–579. DOI: 10.1016/j.jnutbio.2014.01.008.
  • Li, F.; Jiang, M.; Ma, M.; Chen, X.; Zhang, Y.; Zhang, Y.; Yu, Y.; Cui, Y.; Chen, J.; Zhao, H., et al. Anthelmintics Nitazoxanide Protects Against Experimental Hyperlipidemia and Hepatic Steatosis in Hamsters and Mice. Acta Pharm. Sin. B. 2022, 12(3), 1322–1338.
  • Li, S.; You, J.; Wang, Z.; Liu, Y.; Wang, B.; Du, M.; Zou, T. Curcumin Alleviates High-Fat Diet-Induced Hepatic Steatosis and Obesity in Association with Modulation of Gut Microbiota in Mice. Food. Res. Int. 2021, 143, 110270. DOI: 10.1016/j.foodres.2021.110270.
  • Almatrafi, M. M.; Vergara-Jimenez, M.; Murillo, A. G.; Norris, G. H.; Blesso, C. N.; Fernandez, M. Moringa Leaves Prevent Hepatic Lipid Accumulation and Inflammation in Guinea Pigs by Reducing the Expression of Genes Involved in Lipid Metabolism. Int. J. Mol. Sci. 2017, 18(7), 1330. DOI: 10.3390/ijms18071330.
  • Patel, Y.; Vadgama, V.; Baxi, S.; Tripathi, C. B.; Tripathi, B. Evaluation of Hypolipidemic Activity of Leaf Juice of Catharanthus Roseus (Linn.) G. Donn. in Guinea Pigs. Acta. Pol. Pharm. 2011, 68(6), 927–935.
  • Zhang, Y.; Si, Y.; Zhai, L.; Yang, N.; Yao, S.; Sang, H.; Zu, D.; Qin, S.; Wang, J. Celastrus Orbiculatus Thunb. Ameliorates High-Fat Diet-Induced Non-Alcoholic Fatty Liver Disease in Guinea Pigs. Pharm. - Int. J. Pharm. Sci 2013, 68(10), 850–854. DOI: 10.1691/ph.2013.3524.
  • Skat-Rørdam, J.; Pedersen, K.; Skovsted, G. F.; Gregersen, I.; Vangsgaard, S.; Ipsen, D. H.; Latta, M.; Lykkesfeldt, J.; Tveden-Nyborg, P. Vitamin C Deficiency May Delay Diet-Induced NASH Regression in the Guinea Pig. Antioxidants. 2021, 11(1), 69. DOI: 10.3390/antiox11010069.
  • Skovsted, G. F.; Skat-Rørdam, J.; Frøkiær, A. P.; Jensen, H. E.; Tveden-Nyborg, P.; Lykkesfeldt, J. Vitamin C Deficiency Exacerbates Dysfunction of Atherosclerotic Coronary Arteries in Guinea Pigs Fed a High-Fat Diet. Antioxidants. 2022, 11(11), 2226. DOI: 10.3390/antiox11112226.
  • Hamza, E.; Brahim, O.; Khalid, S.; Chakib, A. In vitro Investigations of Biological Activities of Thymus Willdenowii and Thymus Atlanticus Polyphenol-Rich Extracts. Int. J. Second. Metab. 2023, 10(1), 48–58. DOI: 10.21448/ijsm.1110715.
  • Khouya, T.; Ramchoun, M.; Hmidani, A.; Amrani, S.; Harnafi, H.; Benlyas, M.; Filali Zegzouti, Y.; Alem, C. Anti-Inflammatory, Anticoagulant and Antioxidant Effects of Aqueous Extracts from Moroccan Thyme Varieties. Asian Pac. J. Trop. Biomed. 2015, 5(8), 636–644. DOI: 10.1016/j.apjtb.2015.05.011.
  • Elufioye, T. O.; Habtemariam, S. Hepatoprotective Effects of Rosmarinic Acid: Insight into Its Mechanisms of Action. Biomed. Pharmacother. 2019, 112, 108600. DOI: 10.1016/j.biopha.2019.108600.
  • Alshammari, G. M.; Al-Qahtani, W. H.; AlFaris, N. A.; Alzahrani, N. S.; Alkhateeb, M. A.; Yahya, M. A. Quercetin Prevents Cadmium Chloride-Induced Hepatic Steatosis and Fibrosis by Downregulating the Transcription of MiR-21. BioFactors. 2021, 47(3), 489–505. DOI: 10.1002/biof.1724.
  • Wang, T.; Liu, L.; Deng, J.; Jiang, Y.; Yan, X.; Liu, W. Analysis of the Mechanism of Action of Quercetin in the Treatment of Hyperlipidemia Based on Metabolomics and Intestinal Flora. Food Funct. 2023, 14(4), 2112–2127. DOI: 10.1039/D2FO03509J.
  • Zych, M.; Kaczmarczyk-Sedlak, I.; Wojnar, W.; Folwarczna, J. Effect of Rosmarinic Acid on the Serum Parameters of Glucose and Lipid Metabolism and Oxidative Stress in Estrogen-Deficient Rats. Nutrients. 2019, 11(2), 267. DOI: 10.3390/nu11020267.
  • Nyandwi, J. B.; Ko, Y. S.; Jin, H.; Yun, S. P.; Park, S. W.; Kim, H. J. Rosmarinic Acid Exhibits a Lipid-Lowering Effect by Modulating the Expression of Reverse Cholesterol Transporters and Lipid Metabolism in High-Fat Diet-Fed Mice. Biomolecules. 2021, 11(10), 1470. DOI: 10.3390/biom11101470.
  • Komeili-Movahhed, T.; Bassirian, M.; Changizi, Z.; Moslehi, A. SIRT1/Nfκb Pathway Mediates Anti-Inflammatory and Anti-Apoptotic Effects of Rosmarinic Acid on in a Mouse Model of Nonalcoholic Steatohepatitis (NASH). J. Recept. Signal Transduct. 2022, 42(3), 241–250. DOI: 10.1080/10799893.2021.1905665.
  • Radhakrishnan, N.; Lam, K. W.; Intan, S. I. In silico Analysis of Mentha Pipertia (Phyto-Constituents) as HMG Coa Reductase and Squalene Synthase Inhibitors. Int. Food Res. J. 2018, 25, 3.
  • Kısa, D.; Kaya, Z.; İ̇̇mamoğlu, R.; Genç, N.; Taslimi, P.; Taskin-Tok, T. Assessment of Antimicrobial and Enzymes Inhibition Effects of Allium Kastambulense with in silico Studies: Analysis of Its Phenolic Compounds and Flavonoid Contents. Arab J. Chem. 2022, 15(6), 103810. DOI: 10.1016/j.arabjc.2022.103810.
  • Touiss, I.; Ouahhoud, S.; Harnafi, M.; Khatib, S.; Bekkouch, O.; Amrani, S.; Harnafi, H. Toxicological Evaluation and Hepatoprotective Efficacy of Rosmarinic Acid-Rich Extract from Ocimum Basilicum L. Evid. Based Complement. Alternat. Med. 2021, 2021, 1–10. DOI: 10.1155/2021/6676998.
  • Pisonero-Vaquero, S.; Martínez-Ferreras, Á.; García-Mediavilla, M. V.; Martínez-Flórez, S.; Fernández, A.; Benet, M.; Olcoz, J. L.; Jover, R.; González-Gallego, J.; Sánchez-Campos, S., et al. Quercetin Ameliorates Dysregulation of Lipid Metabolism Genes via the PI3K/AKT Pathway in a Diet-Induced Mouse Model of Nonalcoholic Fatty Liver Disease. Mol. Nutr Food Res. 2015, 59(5), 879–893.
  • Mohan, S. K.; Veeraraghavan, V. P.; Jainu, M. Effect of Pioglitazone, Quercetin and Hydroxy Citric Acid on Extracellular Matrix Components in Experimentally Induced Non-Alcoholic Steatohepatitis. IRAN J. BASIC MED. SCI. 2015, 18(8), 832–836.
  • Prysyazhnyuk, V. P.; Voloshyn, O. I. Effects of Comprehensive Treatment with Quercetin Administration on Biochemical Blood Parameters and Pro-And Anti-Inflammatory Cytokines in Nonalcoholic Fatty Liver Disease Patients. Pharma Innov. J. 2017, 6(12), 386–389.
  • Pasdar, Y.; Oubari, F.; Zarif, M. N.; Abbasi, M.; Pourmahmoudi, A.; Hosseinikia, M. Effects of Quercetin Supplementation on Hematological Parameters in Non-Alcoholic Fatty Liver Disease: A Randomized, Double-Blind, Placebo-Controlled Pilot Study. Clin. Nutr. Res. 2020, 9(1), 11–19. DOI: 10.7762/cnr.2020.9.1.11.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.