103
Views
0
CrossRef citations to date
0
Altmetric
Research Article

In Vitro Biological Activity Screening of Arbutus Unedo Leaves in Light of Their Traditional Use

, , , , , , & show all
Pages 68-82 | Received 14 Jun 2023, Published online: 05 Sep 2023

References

  • Bebek Markovinović, A.; Brčić Karačonji, I.; Jurica, K.; Lasić, D.; Skendrović Babojelić, M.; Duralija, B.; Šic Žlabur, J.; Putnik, P.; Bursać Kovačević, D. Strawberry Tree Fruits and Leaves (Arbutus Unedo L.) as Raw Material for Sustainable Functional Food Processing: A Review. Horticulturae. 2022, 8(10), 881. DOI: 10.3390/horticulturae8100881.
  • Lopes, L.; Sá, O.; Pereira, J. A.; Baptista, P. Genetic Diversity of Portuguese Arbutus Unedo L. Populations Using Leaf Traits and Molecular Markers: An Approach for Conservation Purposes. Sci. Hortic. 2012, 142, 57–67. DOI: 10.1016/j.scienta.2012.04.031.
  • Morgado, S.; Morgado, M.; Plácido, A. I.; Roque, F.; Duarte, A. P. Arbutus Unedo L.: From Traditional Medicine to Potential Uses in Modern Pharmacotherapy. J. Ethnopharmacol. 2018, 225, 90–102. DOI: 10.1016/j.jep.2018.07.004.
  • Brčić Karačonji, I.; Jurica, K.; Gašić, U.; Dramićanin, A.; Tešić, Ž.; Milojković Opsenica, D. Comparative Study on the Phenolic Fingerprint and Antioxidant Activity of Strawberry Tree (Arbutus Unedo L.) Leaves and Fruits. Plants. 2022, 11(1), 25. DOI: 10.3390/plants11010025.
  • Mendes, L.; De Freitas, V.; Baptista, P.; Carvalho, M. Comparative Antihemolytic and Radical Scavenging Activities of Strawberry Tree (Arbutus Unedo L.) Leaf and Fruit. Food. Chem. Toxicol. 2011, 49(9), 2285–2291. DOI: 10.1016/j.fct.2011.06.028.
  • Farzaneh, V.; Carvalho, I. S. A Review of the Health Benefit Potentials of Herbal Plant Infusions and Their Mechanism of Actions. Ind. Crops Prod. 2015, 65, 247–258. DOI: 10.1016/j.indcrop.2014.10.057.
  • Asmaa, N.; Abdelaziz, G.; Boulanouar, B.; Carbonell-Barrachina, Á. A.; Cano-Lamadrid, M.; Noguera-Artiaga, L. Chemical Composition, Antioxidant Activity and Mineral Content of Arbutus Unedo (Leaves and Fruits). J. Microbiol. Biotechnol. Food Sci. 2021, 8, 1335–1339.
  • Asmaa, N.; Abdelaziz, G.; Boulanouar, B.; Carbonell-Barrachina, A. A.; Cano-Lamadrid, M.; Noguera-Artiaga, L. Chemical Composition, Antioxidant Activity and Mineral Content of Arbutus Unedo (Leaves and Fruits. J. Microbiol. Biotech. Food Sci. 2021, 8(16), 1335–1339. DOI: 10.15414/jmbfs.2019.8.6.1335-1339.
  • Micucci, M.; Bolchi, C.; Budriesi, R.; Cevenini, M.; Maroni, L.; Capozza, S.; Chiarini, A.; Pallavicini, M.; Angeletti, A. Antihypertensive Phytocomplexes of Proven Efficacy and Well-Established Use: Mode of Action and Individual Characterization of the Active Constituents. Phytochemistry. 2020, 170, 112222. DOI: 10.1016/j.phytochem.2019.112222.
  • Ellnain-Wojtaszek, M.; Zgorka, G. High-Performance Liquid Chromatography and Thin-Layer Chromatography of Phenolic Acids from Ginkgo Biloba L. Leaves Collected within Vegetative Period. J. Liq. Chromatogr. Relat. Technol. 1999, 22, 1457–1471. DOI: 10.1081/JLC-100101744.
  • Szlósarczyk, M.; Piech, R.; Paśko, P.; Opoka, W.; Krzek, J. Voltammetric Determination of Zinc, Copper, and Selenium in Selected Raw Plant Material. Anal. Lett. 2011, 44(14), 2347–2356. DOI: 10.1080/00032719.2010.551695.
  • Dobrowolska-Iwanek, J.; Zagrodzki, P.; Galanty, A.; Fołta, M.; Kryczyk-Kozioł, J.; Szlósarczyk, M.; Rubio, P. S.; Saraiva de Carvalho, I.; Paśko, P. Determination of Essential Minerals and Trace Elements in Edible Sprouts from Different Botanical Families—Application of Chemometric Analysis. Foods. 2022, 11(3), 1–13. 371. DOI: 10.3390/foods11030371.
  • Makowska‐Wąs, J.; Galanty, A.; Gdula‐Argasińska, J.; Tyszka‐Czochara, M.; Szewczyk, A.; Nunes, R.; Carvalho, I. S.; Michalik, M.; Paśko, P. Identification of Predominant Phytochemical Compounds and Cytotoxic Activity of Wild Olive Leaves (Olea Europaea L. Ssp. sylvestris) Harvested in South Portugal. Chem. Biodivers. 2017, 14(3), e1600331. DOI: 10.1002/cbdv.201600331.
  • Adach, A.; Daszkiewicz, M.; Tyszka-Czochara, M.; Barszcz, B. New Oxovanadium (IV) Complexes with Pincer Ligand Obtained in Situ: Experimental and Theoretical Studies on the Structure, Spectroscopic Properties and Antitumour Activity. R.S.C. Adv. 2015, 5, 85470–85479. DOI: 10.1039/C5RA12561H.
  • Tyszka-Czochara, M.; Paśko, P.; Reczynski, W.; Szlosarczyk, M.; Bystrowska, B.; Opoka, W. Zinc and Propolis Reduces Cytotoxicity and Proliferation in Skin Fibroblast Cell Culture: Total Polyphenol Content and Antioxidant Capacity of Propolis. Biol. Trace Elem. Res. 2014, 160(1), 123–131. DOI: 10.1007/s12011-014-0019-3.
  • Tyszka-Czochara, M.; Paśko, P.; Zagrodzki, P.; Gajdzik, E.; Wietecha-Posluszny, R.; Gorinstein, S. Selenium Supplementation of Amaranth Sprouts Influences Betacyanin Content and Improves Anti-Inflammatory Properties via NF Kappa B in Murine RAW 264.7 Macrophages. Biol. Trace Elem. Res. 2016, 169, 320–330. DOI: 10.1007/s12011-015-0429-x.
  • Nunes, R.; Paśko, P.; Tyszka-Czochara, M.; Szewczyk, A.; Szlosarczyk, M.; Carvalho, I. S. Antibacterial, Antioxidant and Anti-Proliferative Properties and Zinc Content of Five South Portugal Herbs. Pharm. Biol. 2017, 55(1), 114–123. DOI: 10.1080/13880209.2016.1230636.
  • Lamaison, J. L.; Carnat, A. Teneurs en acide rosmarinique, en dérivés hydroxycinnamiques totaux et activités antioxydantes chez les Apiacées, les Borraginacées et les Lamiacées médicinales. Pharm. Acta Helv. 1990, 65, 315–320.
  • Oyaizu, M. Antioxidative Activity of Browning Products of Glucosamine Fractionated by Organic Solvent and Thin-Layer Chromatography. J. Jpn. Soc. Food Sci. 1986, 35, 771–775. DOI: 10.3136/nskkk1962.35.11_771.
  • Benzie, I. F.; Strain, J. J. The Ferric Reducing Ability of Plasma (FRAP) as a Measure of “Antioxidant power”: The FRAP Assay. Anal. Biochem. 1996, 239, 70–76. DOI: 10.1006/abio.1996.0292.
  • Gaudreau, C.; Gilbert, H. Comparison of Disc Diffusion and Agar Dilution Methods for Antibiotic Susceptibility Testing of Campylobacter Coli. J. Antimicrob. Chemoth. 1997, 39, 707–712. DOI: 10.1093/jac/39.6.707.
  • Sancheti, S.; Sancheti, S.; Seo, S. Y. Antidiabetic and Antiacetylcholinesterase Effects of Ethyl Acetate Fraction of Chaenomeles Sinensis (Thouin) Koehne Fruits in Streptozotocin-Induced Diabetic Rats. Exp. Toxicol. Pathol. 2013, 65, 55–60. DOI: 10.1016/j.etp.2011.05.010.
  • Li, H. L.; Song, F. R.; Xing, J. P.; Tsao, R.; Liu, Z. Q.; Liu, S. Y. Screening and Structural Characterization of Alpha-Glucosidase Inhibitors from Hawthorn Leaf Flavonoids Extract by Ultrafiltration LC-DAD-MSn and SORI-CID FTICR MS. J. Am. Soc. Mass Spectrom. 2009, 20, 1496–1503. DOI: 10.1016/j.jasms.2009.04.003.
  • Brčić Karačonji, I.; Jurica, K.; Gašić, U.; Dramićanin, A.; Tešić, Ž.; Milojković Opsenica, D. Comparative Study on the Phenolic Fingerprint and Antioxidant Activity of Strawberry Tree (Arbutus Unedo L.) Leaves and Fruits. Plants. 2021, 11(1), 25. DOI: 10.3390/plants11010025.
  • Mrabti, H. N.; Marmouzi, I.; Sayah, K.; Chemlal, L.; El Ouadi, Y.; Elmsellem, H.; Cherrah, Y.; Faouzi, M. A. Arbutus Unedo L Aqueous Extract is Associated with in vitro and in vivo Antioxidant Activity. V J. Mater. Environ. Sci. 2017, 8(1), 217–224.
  • Erdoğan, G.; Uysal, T. Characterization of Antioxidant Properties of Strawberry Tree (Arbutus Unedo L.) and Trace Elements Determination. J. Res. Pharm. 2020, 24(5), 774–785. DOI: 10.35333/jrp.2020.230.
  • Mariotto, S.; Ciampa, A. R.; De Prati, A. C.; Darra, E.; Vincenzi, S.; Sega, M.; Cavalieri, E.; Shoji, K.; Suzuki, H. Aqueous Extract of Arbutus Unedo Inhibits STAT1 Activation in Human Breast Cancer Cell Line MDA-MB-231 and Human Fibroblasts Through SHP2 Activation. Med. Chem. 2008, 4, 219–228. DOI: 10.2174/157340608784325179.
  • Bouyahya, A.; El Moussaoui, N.; Abrini, J.; Bakri, Y.; Dakka, N. Determination of Phenolic Contents, Antioxidant and Antibacterial Activities of Strawberry Tree (Arbutus Unedo L.) Leaf Extracts. Br. Biotechnol. J. 2016, 14(3), 1–10. DOI: 10.9734/BBJ/2016/26488.
  • Stan, D.; Enciu, A. M.; Mateescu, A. L.; Ion, A. C.; Brezeanu, A. C.; Stan, D.; Tanase, C. Natural Compounds with Antimicrobial and Antiviral Effect and Nanocarriers Used for Their Transportation. Front. Pharmacol. 2021, 12, 723233. DOI: 10.3389/fphar.2021.723233.
  • Borges, A.; Ferreira, C.; Saavedra, M. J.; Simoes, M. Antibacterial Activity and Mode of Action of Ferulic and Gallic Acids Against Pathogenic Bacteria. Microb. Drug Resist. 2013, 19(4), 256–265. DOI: 10.1089/mdr.2012.0244.
  • Tenuta, M. C.; Deguin, B.; Loizzo, M. R.; Dugay, A.; Acquaviva, R.; Malfa, G. A.; Bonesi, M.; Bouzidi, C.; Tundis, R. Contribution of Flavonoids and Iridoids to the Hypoglycaemic, Antioxidant, and Nitric Oxide (NO) Inhibitory Activities of Arbutus Unedo L. Antioxidants. 2020, 9(2), 184. DOI: 10.3390/antiox9020184.
  • Bljajić, K.; Brajković, A.; Čačić, A.; Vujić, L.; Jablan, J.; Saraiva de Carvalho, I.; Zovko Končić, M. Chemical Composition, Antioxidant, and α-Glucosidase-Inhibiting Activity of Aqueous and Hydroethanolic Extracts of Traditional Antidiabetics from Croatian Ethnomedicine. Horticulturae. 2021, 7(2), 15. DOI: 10.3390/horticulturae7020015.
  • Bljajić, K.; Petlevski, R.; Vujić, L.; Čačić, A.; Šoštarić, N.; Jablan, J.; Saraiva de Carvalho, I.; Zovko Končić, M. Chemical Composition, Antioxidant and α-Glucosidase-Inhibiting Activities of the Aqueous and Hydroethanolic Extracts of Vaccinium Myrtillus Leaves. Molecules. 2017, 22(5), 703. DOI: 10.3390/molecules22050703.
  • Verma, N.; Amresh, G.; Sahu, P. K.; Mishra, N.; Rao, C. V.; Singh, A. P. Pharmacological Evaluation of Hyperin for Antihyperglycemic Activity and Effect on Lipid Profile in Diabetic Rats. Indian J. Exp. Biol. 2013, 51, 65–72.
  • Bljajić, K.; Šoštarić, N.; Petlevski, R.; Vujić, L.; Brajković, A.; Fumić, B.; de Carvalho, I. S.; Končić, M. Z. Effect of Betula Pendula Leaf Extract on α-Glucosidase and Glutathione Level in Glucose-Induced Oxidative Stress. Evid. Based Complement. Altern. Med. 2016, 2016, 1–8. DOI: 10.1155/2016/8429398.
  • Szrok, S.; Stelmanska, E.; Turyn, J.; Bielicka-Gieldon, A.; Sledzinski, T.; Swierczynski, J. Metallothioneins 1 and 2, but Not 3, are Regulated by Nutritional Status in Rat White Adipose Tissue. Genes Nutr. 2016, 11(1), 18. DOI: 10.1186/s12263-016-0533-3.
  • Galanty, A.; Niepsuj, M.; Grudzińska, M.; Zagrodzki, P.; Podolak, I.; Paśko, P. In the Search for Novel, Isoflavone-Rich Functional Foods—Comparative Studies of Four Clover Species Sprouts and Their Chemopreventive Potential for Breast and Prostate Cancer. Pharmaceuticals. 2022, 15(7), 806. DOI: 10.3390/ph15070806.
  • Cavaco, T.; Longuinho, C.; Quintas, C.; Saraiva de Carvalho, I. Chemical and Microbial Changes During the Natural Fermentation of Strawberry Tree (Arbutus Unedo L.) Fruits. J. Food Biochem. 2007, 31(6), 715–725. DOI: 10.1111/j.1745-4514.2007.00138.x.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.