82
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Changes in Soil Bacterial Community Structure and Diversity of Pinus Tabuliformis Plantation after 65 Years of near-naturalization in North China

, , , , , & show all

References

  • Averill, C., Hawkes, C. V., & Bardgett, R. (2016). Ectomycorrhizal fungi slow soil carbon cycling. Ecology Letters, 19(8), 937–947. https://doi.org/10.1111/ele.12631
  • Bainard, L. D., Gan, Y., & Hamel, C. (2016). Edaphic properties override the influence of crops on the composition of the soil bacterial community in a semiarid agroecosystem. Applied Soil Ecology, 105, 160–168. https://doi.org/10.1016/j.apsoil.2016.03.013
  • Bao, S. D. (2000). Soil analysis in agricultural chemistry. China Agriculture Press.
  • Beauregard, M. S., Hamel, C., St-Arnaud, M., & St-Arnaud, M. (2010). Long-term phosphorus fertilization impacts soil fungal and bacterial diversity but not AM fungal community in alfalfa. Microbial Ecology, 59(2), 379–389. https://doi.org/10.1007/s00248-009-9583-z.
  • Canals, R. M., Múgica, L., Durán, M., & Emeterio, L. S. (2019). Soil bacterial functional diversity mirrors the loss of plant diversity by the expansion of a native tall-grass in high mountain grasslands. Plant and Soil, 445(1–2), 243–257. https://doi.org/10.1007/s11104-019-04281-w
  • Canini, F., Zucconi, L., Pacelli, C., Selbmann, L., Onofri, S., & Geml, J. (2019). Vegetation, pH and water content as main factors for shaping fungal richness, community composition and functional guilds distribution in soils of western Greenland. Frontiers in Microbiology, 10, 2348. https://doi.org/10.3389/fmicb.2019.02348
  • Chao, A. (1984). Non-parametric estimation of the number of classes in a population. Scandinavian Journal of Statistics, 11, 265–270.
  • Chao, A., & S.-M, L. (1992). Estimating the number of classes via sample coverage. Journal of the American Statistical Association, 87(417), 210–217. http://do.org/10.1080/01621459.1992.10475194
  • Chen, G. P., Shi, C., Cheng, S. S., Zhao, T. J., Liu, G. Q., & Shi, F. C. (2017). The structure and soil characteristics of a pinus tabuliformis planted forest after 60 years of natural development in North China. Silva Fennica, 51(1), 1–16. doi:10.14214/sf.1709.
  • Chen, L., Xiang, W. H., Wu, H. L., Ouyang, S., Zhou, B., Zeng, Y. L., Chen, Y. L., & Yakov, K. (2019). Tree species identity surpasses richness in affecting soil microbial richness and community composition in subtropical forests. Soil Biology & Biochemistry, 130, 113–121. https://doi.org/10.1016/j.soilbio.2018.12.008
  • Chu, H. Y., Neufeld, J. D., Walker, V. K., & Grogan, P. (2011). The influence of vegetation type on the dominant soil bacteria, archaea, and fungi in a low Arctic tundra landscape. Soil Science Society of America Journal, 75(5), 1756–1765. https://doi.org/10.2136/sssaj2011.0057
  • Dai, Z., Su, W., Chen, H., Barberán, A., Xu, J., Yu, M., Yu, L., Brookes, P. C., Schadt, C. W., Chang, S. X., & Xu, J. (2018). Long-term nitrogen fertilization decreases bacterial diversity and favors the growth of Actinobacteria and Proteobacteria in agro-ecosystems across the globe. Global Change Biology, 24(8), 3452–3461. doi:10.1111/gcb.14163.
  • Das, S., Jeong, S. T., Das, S., & Kim, P. J. (2017). Composted cattle manure increases microbial activity and soil fertility more than composted swine manure in a submerged rice paddy. Frontiers in Microbiology, 8, 1702. doi:10.3389/fmicb.2017.01702.
  • Dray, S., & Dufour, A. (2007). The ade4 package: Implementing the duality diagram for ecologists. Journal of Statistical Software, 22(4), 1–20. https://doi.org/10.18637/jss.v022.i04
  • Epron, D., Mouanda, C., Mareschal, L., & Koutika, L. S. (2015). Impacts of organic residue management on the soil C dynamics in a tropical eucalypt plantation on a nutrient-poor sandy soil after three rotations. Soil Biology & Biochemistry, 85, 183–189. http://doi.org/10.1016/j.soilbio.2015.03.010
  • Ferraz, Fillo, A. C., Scolforo, J. R. S., & Mola-Yudego, B. (2014). The coppice-with-standards silvicultural system as applied to Eucalyptus plantations-a review. Journal of Forest Research, 25(2), 237–248. http://doi.org/10.1007/s11676-014-0455-0
  • Gao, X. P., Chen, H. Y. H., Meng, M. J., Biswas, S. R., Ye, L. X., & Zhang, J. C. (2016). Effects of land use change on the composition of soil microbial communities in a managed subtropical forest. Forest Ecology and Management, 373, 93–99. https://doi.org/10.1016/j.foreco.2016.03.048
  • Gao, J. X., Pei, H. X., & Xie, H. (2020). Synergistic effects of organic fertilizer and corn straw on microorganisms of pepper continuous cropping soil in China. Bioengineered, 11(1), 1258–1268. https://doi.org/10.1080/21655979.2020.1840753
  • Goldfarb, K. C., Karaoz, U., Hanson, C. A., Santee, C. A., Bradford, M. A., Treseder, K. K., Wallenstein, M. D., & Brodie, E. L. (2011). Differential growth responses of soil bacterial taxa to carbon substrates of varying chemical recalcitrance. Frontiers in Microbiology, 2, e00094. doi:10.3389/fmicb.2011.00094.
  • Hanif, M. A., Guo, Z., Moniruzzaman, M., He, D., Yu, Q., Rao, X., Liu, S., Tan, X., & Shen, W. (2019). Plant taxonomic diversity better explains soil fungal and bacterial diversity than functional diversity in restored forest ecosystems. Plants, 8(11), 479–500. doi:10.3390/plants8110479.
  • Helgason, B. L., Konschuh, H. J., Bedard-Haughn, A., & Vandenbygaart, A. J. (2014). Microbial distribution in an eroded landscape: Buried A horizons support abundant and unique communities. Agriculture, Ecosystems & Environment, 196, 94–102. doi:10.1016/j.agee.2014.06.029.
  • Hjalmarsson, A. E., Bukontaite, R., Tanarilalatiana, T., Randriamihaja, J. H., & Bergsten, J. (2013). Taxonomic revision of madagascan rhantus (coleoptera, dytiscidae, colymbetinae) with an emphasis on manjakatompo as a conservation priority. Zookeys, 14 (350), 21–45. eCollection 2013 https://doi.org/10.3897/zookeys.350.6127
  • Horrocks, C. A., Arango, J., Arevalo, A., Nuñez, J., Cardoso, J. A., & Dungait, J. A. J. (2019). Smart forage selection could significantly improve soil health in the tropics. Science of the Total Environment, 688, 609–621. https://doi.org/10.1016/j.scitotenv.2019.06.152
  • Hou, L. Y., Zhang, Y. Q., Li, Z. C., Shao, G. D., Song, L. G., & Sun, Q. W. (2021). Comparison of soil properties, understory vegetation species diversities and soil microbial diversities between Chinese fir plantation and close-to-natural forest. Forests, 12(5), 632. doi:10.3390/f12050632.
  • Jassey, V. E. J., Chiapusio, G., Binet, P., Buttler, A., Laggoun-Defarge, F., Delarue, F., Bernard, N., Mitchell, E. A. D., Toussaint, M. L., Francez, A. J., & Gilbert, D. (2013). Above- and belowground linkages in Sphagnum peatland: Climate warming affects plant-microbial interactions. Global Change Biology, 19(3), 811–823. doi:10.1111/gcb.12075.
  • Kielak, A., Pijl, A. S., van Veen, J. A., & Kowalchuk, G. A. (2008). Differences in vegetation composition and plant species identity lead to only minor changes in soil-borne microbial communities in a former arable field. FEMS Microbial Ecology, 63(3), 372–382. doi:10.1111/j.1574-6941.2007.00428.x.
  • Krishna, M., Gupta, S., Delgado-Baquerizo, M., Morrien, E., Garkoti, S. C., Chaturvedi, R., & Ahmad, S. (2020). Successional trajectory of bacterial communities in soil are shaped by plant-driven changes during secondary succession. Scientific Reports, 10(1), 9864. doi:10.1038/s41598-020-66638-x.
  • Lange, M., Eisenhauer, N., Sierra, C. A., Bessler, H., Engels, C., Griffiths, R. I., Mellado-Vazquez, P. G., Malik, A. A., Roy, J., Scheu, S., Steinbeiss, S., Thomson, B. C., Trumbore, S. E., & Gleixner, G. (2015). Plant diversity increases soil microbial activity and soil carbon storage. Nature Communications, 6(1), 1–8. doi:10.1038/ncomms7707.
  • Lange, M., Habekost, M., Eisenhauer, N., Roscher, C., Bessler, H., Engels, C., Oelmann, Y., Scheu, S., Wilcke, W., Schulze, E. D., Gleixner, G., & Berg, G. (2014). Biotic and abiotic properties mediating plant diversity effects on soil microbial communities in an experimental grassland. PloS One, 9(5), e96182. doi:10.1371/journal.pone.0096182.
  • Liang, C., & Balser, T. C. (2011). Microbial production of recalcitrant organic matter in global soils: Implications for productivity and climate policy. Nature Reviews. Microbiology, 9(1), 75. doi:10.1038/nrmicro2386-c1.
  • Li, Y., Fang, F., Wei, J. L., Wu, X. B., Cui, R. Z., Li, G. S., Zheng, F. L., & Tan, D. S. (2019). Humic acid fertilizer improved soil properties and soil microbial diversity of continuous cropping peanut: A three-year experiment. Scientific Reports, 9(1), 12104. doi:10.1038/s41598-019-48620-4.
  • Li, S. F., Huang, X. B., Lang, X. D., Shen, J., Su, J., & Su, J. (2020). Cumulative effects of multiple biodiversity attributes and abiotic factors on ecosystem multifunctionality in the Jinsha river valley of southwestern China. Forest Ecology and Management, 472, 118281. doi:10.1016/j.foreco.2020.118281.
  • Li, X. J., Li, X. R., Wang, X. P., & Yang, H. T. (2016). Changes in soil organic carbon fractions after afforestation with xerophytic shrubs in the tengger desert, northern China. European Journal of Soil Science, 67(2), 184–195. doi:10.1111/ejss.1231.
  • Lin, Y. T., Whitman, W. B., Coleman, D. C., Jien, S. H., & Chiu, C. Y. (2017). Cedar and bamboo plantations alter structure and diversity and diversity of the soil bacterial community from a hardwood forest in subtropical mountain. Applied Soil Ecology, 112, 28–33. doi:10.1016/j.apsoil.2017.01.001.
  • Li, X. Z., Rui, J. P., Mao, Y. J., Yannarell, A., & Mackie, R. (2014). Dynamics of the bacterial community structure in the rhizosphere of a maize cultivar. Soil Biology & Biochemistry, 68, 392–401. doi:10.1016/j.soilbio.2013.10.017.
  • Liu, G. Y., Chen, L. L., Shi, X. R., Yuan, L. Y., Lock, T. R., Kallenbach, R. L., & Yuan, Z. Y. (2019). Changes in rhizosphere bacterial and fungal community composition with vegetation restoration in planted forests. Land Degradation & Development, 30(10), 1147–1157. doi:10.1002/ldr.3275.
  • Liu, C. L. C., Kuchma, O., & Krutovsky, K. V. (2018). Mixed-species versus monocultures in plantation forestry: Development, benefits, ecosystem services and perspectives for the future. Global Ecology and Conservation, 15, e00419. doi:10.1016/j.gecco.2018.e00419.
  • Liu, G., Man, J., Cai, C., Ma, C., Chen, Z., & Gao, L. (2019). Soil microbial community structure and physicochemical properties in amomum tsaoko-based agroforestry systems in the Gaoligong Mountains, South-West China. Sustainability, 11, 1–14. doi:10.3390/su11020546.
  • Liu, J., Sui, Y., Yu, Z., Shi, Y., Chu, H., Jin, J., Liu, X., & Wang, G. (2014). High throughput sequencing analysis of biogeographical distribution of bacterial communities in the black soils of Northeast China. Soil Biology & Biochemistry, 270, 113–122. doi:10.1016/j.soilbio.2013.12.014
  • Miao, L. Z., Wang, P. F., Hou, J., Yao, Y., Liu, Z. L., Liu, S. Q., & Li, T. F. (2019). Distinct community structure and microbial functions of biofilms colonizing microplastics. Science of the Total Environment, 650, 2395–2402. doi:10.1016/j.scitotenv.2018.09.378.
  • Mitchell, P. J., Simpson, A. J., Soong, R., Schurman, J. S., Thomas, S. C., & Simpson, M. J. (2016). Biochar amendment and phosphorus fertilization altered forest soil microbial community and native soil organic matter molecular composition. Biogeochemistry, 130(3), 227–245. doi:10.1007/s10533-016-0254-0.
  • Moghaddam, E. R. (2014). Growth, development and yield in pure and mixed forest stands. International Journal of Advanced Biological and Biomedical Research, 2(10), 2725e2730. http://www.ijabbr.com/article_10205_0c7888600affb53e7fec73d4fa1036e6.pdf
  • Mueller, R. C., Paula, F. S., Mirza, B. S., Rodrigues, J. L. M., Nusslein, K., & Bohannan, B. J. M. (2014). Links between plant and fungal communities across a deforestation chronosequence in the Amazon rainforest. The ISME Journal, 8(7), 1548–1550. doi:10.1038/ismej.2013.253.
  • Porazinska, D. L., Farrer, E. C., Spasojevic, M. J., de Mesquita, C. P. B., Sartwell, S. A., Smith, J. G., White, C. T., King, A. J., Suding, K. N., & Schmidt, S. K. (2018). Plant diversity and density predict belowground diversity and function in an early successional alpine ecosystem. Ecology, 99(9), 1942–1952. doi:10.1002/ecy.2420.
  • Qu, T. B., Du, W. C., Yuan, X., Yang, Z. M., Liu, D. B., Wang, L. D., Yu, L. J., & Liu, J. (2016). Impacts of grazing intensity and plant community composition on soil bacterial community diversity in a steppe grassland. PloS One, 11(7), e0159680. doi:10.1371/journal.pone.0159680.
  • Qu, Z., Liu, B., Ma, Y., Xu, J., Sun, H., & Gallery, R. (2020). The response of the soil bacterial community and function to forest succession caused by forest disease. Functional Ecology, 34(12), 2548–2559. doi:10.1111/1365-2435.13665.
  • R Development Core Team. (2006). R, a language and environment for statistical computing. R 21. Foundation for Statistical Computing.
  • Sang, S. L., Zhang, X. Y., Dai, H., Hu, B. X., Ou, H., & Sun, L. W. (2018). Diversity and predictive metabolic pathways of the prokaryotic microbial community along a groundwater salinity gradient of the pearl river delta, China. Scientific Reports, 8(1), 317–320. doi:10.1038/s41598-018-35350-2.
  • Santonja, M., Rancon, A., Fromin, N., Baldy, V., Hattenschwiler, S., Fernandez, C., Montes, N., & Mirleau, P. (2017). Plant litter diversity increases microbeal abundance, fungal diversity, and carbon and nitrogen cycling in a Mediterranean shrubland. Soil Biology and Biochemistry, 111, 124–134. doi:10.1016/j.soilbio.2017.04.006.
  • Simpson, E. H. (1949). Measurement of diversity. Nature Lond, 163(4148), 688.
  • Sujii, P. S., Schwarcz, K. D., Grando, C., Silvestre, E. D., Mori, G. M., Brancalion, P. H. S., & Zucchi, M. I. (2017). Recovery of genetic diversity levels of a neotropical tree in atlantic forest restoration plantations. Biological Conservation, 211, 110–116. doi:10.1016/j.biocon.2017.05.006.
  • Teng, J. L., Tian, J., Yu, G. R., & Kuzyakov, Y. (2021). Soil properties and root traits jointly shape fine-scale spatial patterns of bacterial community and metabolic functions within a Korean pine forest. Peer J, 9, e10902. eCollection 2021.https://doi.org/10.7717/peerj.10902
  • Vitali, F., Mastromei, G., Senatore, G., Caroppo, C., & Casalone, E. (2016). Long lasting effects of the conversion from natural forest to poplar plantation on soil microbial communities. Microbiological Research, 182, 89–98. doi:10.1016/j.micres.2015.10.002.
  • Vuong, T. M. D., Zeng, J. Y., & Man, X. L. (2020). Soil fungal and bacterial communities in southern boreal forests of the greater Khingan mountains and their relationship with soil properties. Scientific Reports, 10(1), 22025. doi:10.1038/s41598-020-79206-0.
  • Wang, Q. K., He, T. X., Wang, S. L., & Liu, L. (2013). Carbon input manipulation affects soil respiration and microbial composition in a subtropical coniferous forest. Agricultural and Forest Meteorology, 178-179(complete), 152–160. doi:10.1016/j.agrformet.2013.04.021.
  • Wang, L., Li, Z. Y., Liu, R. R., Li, L. L., & Wang, W. W. (2019). Bacterial diversity in soybean rhizosphere soil at seedling and mature stages. Polish Journal of Microbiology, 68(2), 281–284. doi:10.33073/pjm-2019-023.
  • Wang, K. F., Qiu, Z. L., Zhang, M., Li, X. Y., Fang, X., Zhao, M. Y., & Shi, F. (2022). Effect of afforestation mode on rhizosphere soil physicochemical properties and bacterial community structure of two major tree species in Xiong’an new area. Forest Ecology and Management, 520, 120361. doi:10.1016/j.foreco.2022.120361.
  • Yang, K., & Zhu, J. (2015). The effects of N and P additions on soil microbial properties in paired stands of temperate secondary forests and adjacent larch plantations in Northeast China. Soil Biology & Biochemistry, 90, 80–86. https://doi.org/10.1016/j.soilbio.2015.08.002
  • Yan, H. M., Yang, F., Gao, J. M., Peng, Z. H., & Cheng, W. M. (2019). Subsoil microbial community responses to air exposure and legume growth depend on soil properties across different depths. Scientific Reports, 9(1), 18536. doi:10.1038/s41598-019-55089-8.
  • Yu, Z., Liu, S. R., Wang, J. X., Wei, X. H., Schuler, J., Sun, P. S., Harper, R., & Zegre, N. (2019). Natural forests exhibit higher carbon sequestration and lower water consumption than planted forests in China. Global Change Biology, 25 (1), 68–77. https://doi.org/10.1111/gcb.14484
  • Zechmeister-Boltenstern, S., Keiblinger, K. M., Mooshammer, M., Penuelas, J., Richter, A., Sardans, J., & Wanek, W. (2015). The application of ecological stoichiometry to plant-microbial-soil organic matter transformations. Ecological Monographs, 85 (2), 133–155. https://doi.org/10.1890/14-0777.1
  • Zhang, P., Cui, Z. Y., Guo, M. Q., & Xi, R. C. (2020). Characteristics of the soil microbial community in the forestland of Camellia oleifera. Peer J, 8, e9117. https://doi.org/10.7717/peerj.9117
  • Zhao, J., Li, S. P., He, Y. Y., Liu, L., & Wang, K. L. (2014). The soil biota composition along a progressive succession of secondary vegetation in a karst area. PLoS One, 9(11), 3112436. https://doi.org/10.1371/journal.pone.0112436
  • Zhong, Z. K., Zhang, X. Y., Wang, X., Fu, S. Y., Wu, S. J., Lu, X. Q., Ren, C. J., Han, X. H., & Yang, G. H. (2020). Soil bacteria and fungi respond differently to plant diversity and plant family composition during the secondary succession of abandoned farmland on the Loess Plateau, China. Plant and Soil, 448(1–2), 183–200. https://doi.org/10.1007/s11104-019-04415-0
  • Zhou, Q. Q., Li, F., Cai, X. A., Rao, X. Q., Zhou, L. X., Liu, Z. F., Lin, Y. B., & Fu, S. L. (2019). Survivorship of plant species from soil seedbank after translocation from subtropical natural forests to plantation forests. Forest Ecology and Management, 432, 741–747. https://doi.org/10.1016/j.foreco.2018.10.013
  • Zhu, P., Wei, W., Bai, X. F., Wu, N., & Hou, Y. P. (2020). Effects of invasive Rhus typhina L. on bacterial diversity and community composition in soil. Écoscience, 27(3), 177–184. https://doi.org/10.1080/11956860.2020.1753312

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.