Publication Cover
Integrated Ferroelectrics
An International Journal
Volume 240, 2024 - Issue 1
41
Views
0
CrossRef citations to date
0
Altmetric
Research Article

High Performance of W-Shaped Piezo Electric Energy Harvester for Smart Building Application

, &
Pages 149-162 | Received 23 Aug 2023, Accepted 12 Nov 2023, Published online: 08 Feb 2024

References

  • Electron_one, ONELECTRONTECH, https://www.onelectrontech.com/self-powered-wireless-sensor-networks-boost-energy-efficiency-of-smart-buildings (25-Oct-2020).
  • H. Ghayvat et al., Enhancement of WSN Based Smart home to a Smart Building for Assisted Living: Design Issues, IEEE Computer Society, (2015). DOI: 10.1109/CSNT.2015.122.
  • C. Jacquemod, B. Nicolle, and G. Jacquemod, WSN for smart building application, IEEE. European Workshop on Microelectronics Education (EWME), 2014. DOI: 10.1109/EWME.2014.6877405.
  • M. H. Anisi et al., Energy harvesting and battery power based routing in wireless sensor networks, Wireless Netw. 23 (1), 249 (2019). DOI: 10.1007/s11276-015-150-6.
  • J. Shah, and B. Mishra, Customized IoT enabled wireless sensing and monitoring platform for smart buildings, Procedia Technol. Elsevier 23, 256 (2016). DOI: 10.1016/j.protcy.2016.03.025.
  • S. Pandey, et al., Design and analysis of piezoelectric energy harvesting circuit for rechargeable ultra-low weight lithium-ion batteries, JESTR 11 (4), 77 (2018). DOI: 10.25103/jestr.114.10.
  • V. Sasrika, P. Lakshmi, and P. Mangaiyarkarasi, Power enhancement of MEMS based piezoelectric energy harvester for bio-fuel cells, IEEE International Systems Conference (SysCon), 2019. DOI: 10.1109/SYSCON.2019.8836736.
  • S.-W. Kim et al., Determination of the appropriate piezoelectric materials for various types of piezoelectric energy harvesters with high output power, Nano Energy 57, 581 (2018). DOI: 10.1016/j.nanoen.2018.12.082.
  • B. Dong, and Z. Li, Cement-based piezoelectric ceramic smart composites, Compos. Sci. Technol. 65 (9), 1363 (2005). DOI: 10.1016/j.compscitech.2004.12.006.
  • I. Jung et al., Flexible piezoelectric polymer-based energy harvesting system for roadway applications, Appl. Energy 197, 222 (2017). DOI: 10.1016/j.apenergy.2017.04.020.
  • N. Kumar Dixita, A. K. Saraf, and D. M. P. Singh, Design and simulation of piezoelectric bimorph cantilever beam, International Conference on Advancements in Computing & Management, 2019. DOI: 10.2139/ssrn.3462946.
  • Y. Chen, and Z. Yan, Nonlinear analysis of unimorph and bimorph piezoelectric energy harvesters with flexoelectricity, Compos. Struct. 259, 113454 (2021). DOI: 10.1016/j.compstruct.2020.113454.
  • S. V. Salunke, S. Roy, and K. R. Jagtap, Modeling of piezoelectric energy harvester and comparative performance study of the proof mass for eigen frequency, Mater. Today: Proc. 5 (2), 4309 (2018). DOI: 10.1016/j.matpr.2017.11.696.
  • R. Shashank, S. K. Harisha, and M. C. Abhishek, Modelling and analysis of piezoelectric cantilever energy harvester for different proof mass and material proportion, IOP, IOP Conf. Ser: Mater. Sci. Eng. 310, 12147 (2018). DOI: 10.1088/1757-899X/310/1/012147.\.
  • L. Dhakar et al., A new energy harvester design for high power output at low frequencies, Sens. Actuators, A 199, 344 (2013). DOI: 10.1016/j.sna.2013.06.009.
  • Z. Wu, and Q. Xu, Design and testing of a novel bidirectional energy harvester with single piezoelectric stack, Mech. Syst. Sig. Process. 122, 139 (2019). DOI: 10.1016/j.ymssp.2018.12.026.
  • J. Song et al., Piezoelectric energy harvester with double cantilever beam undergoing coupled bending‑torsion vibrations by width‑splitting method, Sci. Rep. 12 (1), 583 (2022). DOI: 10.1038/s41598-021-04476-1.
  • M. A. Karami, and D. J. Inman, Parametric study of zigzag micro-structures for vibrational energy harvesting, J. Microelectromech. Syst. 21 (1), 145 (2012). DOI: 10.1109/JMEMS.2011.2171321.
  • D. Bath, and A. Salehian, A novel 3-D folded zigzag piezoelectric energy harvester; modelling and experiments, Smart Mater. Struct. 28 (2), 25011 (2018). DOI: 10.1088/1361-665X/aaf15b.
  • Y. Zhao et al., Modeling and experiment of a V-shaped piezoelectric energy harvester, Shock Vib. 2018, 1 (2018). DOI: 10.1155/2018/7082724.
  • CW Team, construction world.in, https://www.constructionworld.in/latest-construction-news/real-estate-news/interiors/9-smart-buildings-that-say-the-future-is-here/26821 (30-Apr-2021).
  • A. B. Alamin Dow et al., Unimorph and bimorph piezoelectric energy harvester stimulated by β-emitting radioisotopes: A modeling study, Microsyst. Technol. 20 (4-5), 933 (2014). DOI: 10.1007/s00542-014-2093-z.
  • R. Hidalgo-Leon et al., Powering nodes of wireless sensor networks with energy harvesters for intelligent buildings: a review, Energy Rep. 8, 3809 (2022). DOI: 10.1016/j.egyr.2022.02.280.
  • W. Jiang et al., Modeling and design of V-shaped piezoelectric vibration energy harvester with stopper for low-frequency broadband and shock excitation, Sens. Actuat. A 317, 112458 (2021). DOI: 10.1016/j.sna.2020.112458.
  • A. Rahman et al., Progress in piezoelectric material based oceanic wave energy conversion technology, IEEE Access 8, 138595 (2020). DOI: 10.1109/ACCESS.2020.3015821.
  • M. Serridge, and T. R. Licht, Piezoelectric Accelerometer and Vibration Preamplifier Handbook (Bruel & Kjaer, Glostrup 1987

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.