Publication Cover
Integrated Ferroelectrics
An International Journal
Volume 240, 2024 - Issue 1
49
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Reducing Search Space for Halide Perovskites: Comparing New Simple Material Model (NSMM), Coin-Flip, Goldschmidt’s Tolerance Factor Formalism (GTFF), and SPuDS Algorithm

ORCID Icon
Pages 1-19 | Received 03 Nov 2023, Accepted 28 Nov 2023, Published online: 08 Feb 2024

References

  • F. S. Galasso, Structure, Properties and Preparation of Perovskite-Type Compounds (Pergamon Press, Oxford 1969).
  • B. Jaffe, W. R. Cook, Jr., and H. Jaffe, Piezoelectric Ceramics (Academic Press, New York, 1971). ISBN: 0-12-379550-8
  • D. M., Ginsberg, Physical Properties of High Temperature Superconductors II (World Scientific, New Jersey, 1990) ISBN 981-02-0124-9
  • R. K. Pandey, Fundamental of Electroceramics: Materials, Devices and Applications, Wiley-American Ceramic Society (2019). ISBN 978119057345, 1119047345
  • K. Uchino, Ferroelectric Devices, 2nd ed., (CRC Press, 2009) ISPN 9781439803752
  • A. Bhalla, R. Guo, and R. Roy, The perovskite structure – a review of its role in ceramic science and technology, Mat Res Innovat 4 (1), 3 (2000). DOI: 10.1007/s100190000062.
  • A. M. Glazer, Simple ways of determining perovskite structures, Acta Cryst A 31 (6), 756 (1975). DOI: 10.1107/S0567739475001635.
  • C. J. Howard, and H. T. Stokes, Group-Theoretical Analysis of Octahedral Tilting in Perovskites, Acta Crystallogr B Struct. Sci. 54 (6), 782 (1998). DOI: 10.1107/S0108768198004200.
  • C. J. Howard, B. J. Kennedy, and P. M. Woodward, Ordered double perovskites – a group – theoretical analysis, Acta Crystallogr. B 59 (Pt 4), 463 (2003). DOI: 10.1107/S0108768103010073.
  • T.-C. Sum, and N. Mathews, Halide Perovskites: Photovoltaics, Light Emitting Device and Beyond (Wiley-VCH Verlag GmbH& Co 2018). KGaA, ISBN: 9783527800766; DOI: 10.1002/9783527800766.
  • T. Miyasaka, Perovskite Photovoltaics and Optoelectronics: From Fundamentals to Advanced Applications (Wiley-VCH GmbH 2021). ISBN: 9783527347483; DOI: 10.1002/9783527826391.
  • P. Tumurugoti et al., Crystallization behavior during melt-processing of ceramic waste forms, J Nucl Mater 473, 178 (2016). DOI: 10.1016/j.jnucmat.2016.02.023.
  • C. C. Jia et al., Immobilization of radioactive wastes into Perovskite Synrock by SHS method, MSF. 475-479, 1627 (2005). DOI: 10.4028/www.scientific.net/MSF.475-479.1627.
  • V. M. Goldschmidt, Skr. Norske Vidensk Akad. Mat.-naturv. Kl. No. 2 1926a.
  • R. Ubic, Revised method for the prediction of lattice constants in cubic and pseudocubic Perovskites, J Am Ceram Soc 90 (10), 3326 (2007). DOI: 10.1111/j.1551-2916.2007.01881.x.
  • L. M. Feng et al., Formability of ABO3 cubic perovskites, J Phys Chem Solids 69 (4), 967 (2008). DOI: 10.1016/j.jpcs.2007.11.007.
  • L. Liang, L. Wencong, and C. Nianyi, On the criteria of formation and lattice distortion of perovskite-type complex halides, J Phys Chem Solids 65 (5), 855 (2004). DOI: 10.1016/j.jpcs.2003.08.021.
  • C. Li, K. C. Kwan Soh, and P. Wu, Formability of ABO3 perovskites, J Alloy Compd 372 (1-2), 40 (2004). DOI: 10.1016/j.jallcom.2003.10.017.
  • R. Ubic, and G. Subodh, The prediction of lattice constants in orthorhombic perovskites, J Alloy Compd 488 (1), 374 (2009). DOI: 10.106/j.jallcom.2009.08.139.
  • R. D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides, Acta Cryst A 32 (5), 751 (1976). DOI: 10.1107/S0567739476001551.
  • S. C. Tidrow, Mapping comparison of Goldschmidt’s tolerance factor with Perovskite structural conditions, Ferroelectrics 470 (1), 13 (2014). DOI: 10.1080/00150193.2014.922372.
  • V. L. Miller, and S. C. Tidrow, Perovskites: temperature and coordination dependent ionic radii, Integr Ferroelectrics 148 (1), 1 (2013). DOI: 10.1080/10584587.2013.851576.
  • V. L. Miller, and S. C. Tidrow, Perovskites: “Effective” temperature and coordination dependence of 38 ionic radii, Integr Ferroelectr 166 (1), 30 (2015). DOI: 10.1080/10584587.2015.1092196.
  • V. L. Miller, and S. C. Tidrow, Perovskites: some polarization induced structural phase transitions using “effective” temperature and coordination dependent radii and polarizabilities of ions, Integr Ferroelectr 166 (1), 206 (2015). DOI: 10.1080/10584587.2015.1092650.
  • S. C. Tidrow, Linking Curie constant and phase transition temperature with fundamental ion properties, Integr Ferroelectrics 174 (1), 15 (2016). DOI: 10.1080/10584587.2016.1189764.
  • O. F. Mossotti, Mem di Mathem e Fisica in Modena 24, 49 (1850).
  • R. Clausius, Die Mechanische U’grmetheorie 2, 62 (1879).
  • G. Pelosi, and S. Selleri, Historical corner column: The Clausius – Mossotti and Lorentz – Lorenz relations, URSI Radio Sci Bull 2019 (371), 79 (2019). DOI: 10.23919/URSIRSB.2019.9117253.
  • M. W. Lufaso, and P. M. Woodward, Prediction of the crystal structures of perovskites using the software program SPuDS, Acta Crystallogr B 57 (Pt 6), 725 (2001). DOI: 10.1107/S0108768101015282.
  • G. S. Rohrer, Structure and Bonding in Crystalline Materials (Cambridge University Press, New York 2001). ISBN 978-0-521-66328-1
  • C.-Q. Jin et al., High-pressure synthesis of the cubic Perovskite BaRuO3 and evolution of ferromagnetism in ARuO3 (A = Ca, Sr, Ba) Ruthenates, Proc. Natl. Acad. Sci. U S A 105 (20), 7115 (2008). DOI: 10.1073/pnas.0710928105.
  • T. Nakatani et al., Variable-temperature single-crystal X-ray diffraction study of tetragonal and cubic perovskite-type barium titanate phases, Acta Crystallogr. B Struct. Sci. Cryst. Eng. Mater. 72 (Pt 1), 151 (2016). DOI: 10.1107/S2052520615022544.
  • B. J. Kennedy et al., The influence of composition and temperature on the phases of Sr1-xBaxZrO3 Perovskites: a high-resolution power diffraction study, J. Solid State Chem. 161 (1), 106 (2001). DOI: 10.1006/jssc.2001.9295.
  • E. Sawaguchi, Ferroelectricity versus aniferroelectricity in the sold solutions of PbZrO3 and PbTiO3, J. Phys. Soc. Jpn. 8 (5), 615 (1953). DOI: 10.1143/JPSJ.8.615.
  • V. K. Veerapandiyan et al., Structural, electrical and spectroscopic studies of the diffuse phase transition relaxor-like ferroelectric material Ba[(Ho,Sb)0.05Ti0.9]O3, Ferroelectrics 532 (1), 168 (2018). DOI: 10.1080/00150193.2018.1499399.
  • V. K. Veerapandiyan et al., Dielectric and structural studies of ferroelectric phase evolution in dipole-pair substituted barium titanate ceramics, J. Am. Cer. Soc. 103, 1 (2019). DOI: 10.1111/jace.16713.
  • V. Kaliyaperumal Veerapandiyan, Inducing diffuse phase transitions in barium titanate using Ga3+ – Ta5+ dipole pair substitutions, M.S. thesis, Alfred University, 2017.
  • T. Whaley, Paired zinc tungsten dipole engineering of barium titanate at the nanoscale, B.S. (Honors) thesis, Alfred University, 2020.
  • V. R. Pellegrino, Nanoscale dipole engineering of BaTiO3 using Y3+ – Ta5+ dipoles, B.S. thesis, Alfred University, 2020.
  • L. G. Saccucci-Bryan, Nanoscale engineering of barium titanate using copper (II) – Tungsten (VI) dipole pairs, B.S. (Honors) thesis, Alfred University.
  • E. Merkey, Properties of high purity in and Ta dipole substituted and doped BaTiO3, B.S. thesis, Alfred University, 2020.
  • I. J. Chedzoy, Indium (II) and tantalum (V) dipole pair substituted barium titanate, B.S. thesis, Alfred University, 2020.
  • S. D. Nudd, Nanoscale engineering of barium titanate using aluminum (III) – tantalum (V) dipole pairs, B.S. thesis, Alfred University, 2021.
  • W. Senn, Dipole engineering barium titanate (BaTiO3), using manganese (II) – tungsten (VI) pair, B.S. thesis, Alfred University, 2020.
  • W. J. Hogan, Dipole engineering properties of high purity Ba(Mn,W)xTi1-2xO3, 0 ≤ x ≤0.01500, B.S. thesis, Alfred University, 2020.
  • D. W. Spencer, Synthesis of barium titanate substituted copper (II) – molybdenum (VI), B.S. thesis, Alfred University, 2019.
  • R. D. Shannon, Dielectric polarizabilities of ions in oxide and fluorides, J. Appl. Phys 73 (1), 348 (1993). DOI: 10.1063/1.353856.
  • M. R. Srinivasan, and P. S. Narayanan, Dielectric behavior of anisotropic ionic crystals, Pramana. J. Phys. 19 (2), 117 (1982). DOI: 10.1007/BF02846996.
  • C. K. Lo, J. T. K. Wan, and K. W. Yu, Geometric anisotropic effects of local field distribution: generalized Clausius – Mossotti relation, Comput Phys Commun 142 (1-3), 453 (2001). DOI: 10.1016/S0010-4655(01)00388-5.
  • I. G. Wood et al., Thermal expansion and atomic displacement parameters of cubic KMgF3 perovskite determined by high resolution neutron powder diffraction, J. Appl. Crystallogr. 35 (3), 291 (2002). DOI: 10.1107/S0021889802002273.
  • M. Usman et al., Synthesis and crystal structure of a 6H hexagonal fluoro-Perovskite: RbMgF3, J. Chem. Crystallogr. 51 (1), 9 (2021). DOI: 10.1007/s10870-020-00834-5.
  • D. R. Onken et al., The crystal structure of TlMgCl3 from 290 K to 725 K, Acta Crystallogr. E Crystallogr. Commun. 76 (Pt 11), 1716 (2020). DOI: 10.1107/S2056989020013201.
  • K. Gesi, Dielectric study on the phase transitions in RbMgBr3 and Cs2MgCl4, Ferroelectrics 301 (1), 133 (2004). DOI: 10.1080/00150190490455593.
  • A. Khan et al., Intrinsically activated TlCaCl3: a new halide scintillator for radiation detection, Radiat Meas 107, 115 (2017). DOI: 10.1016/j.radmeas.2017.09.003.
  • T. Yanagida et al., Comparative studies of scintillation properties of Tl-based crystals, Sens Mater 32 (4), 1351 (2020). DOI: 10.18494/SAM.2020.2711.
  • K. Kamada et al., Growth and scintillation properties of Eu doped LiSrI3/LiI eutectics, Opt Mater 68, 70 (2017). DOI: 10.1016/j.optmat.2017.05.010.
  • K. Takatsu, W. Shiramura, and H. Tanaka, Ground states of double spin chain systems TlCuCl3, NH4CuCl3 and KCuBr3, J. Phys. Soc. Jpn. 66 (6), 1611 (1997). DOI: 10.1143/JPSJ.66.1611.
  • H. W. Zandbergen, Neutron powder diffraction and magnetic measurement on TlMnI3 and TlFeI3, J Solid State Chem 37 (2), 189 (1981). DOI: 10.1016/0022-4596(81)90085-2.
  • S. Ram, and K. Ram, IR and visible absorption studies on KNiBr3 crystals, J. Solid State Chem. 77 (1), 48 (1988). DOI: 10.1016/002-4596(88)90088-6.
  • C. Kaladevi, and C. K. Mahadevan, Growth and characterization on sodium lead bromide crystals, Int. J. Eng. Res. Technol. 1 (8), 1 (2012).
  • U. Das et al., Compliance current-dependent dual-functional bipolar and threshold resistive switching in all-inorganic rubidium lead-bromide perovskite-based flexible device, ACS Appl. Electron. Mater. 2 (5), 1343 (2020). DOI: 10.1021/acsaelm.0c00130.
  • R. Roy, Rational molecular engineering of ceramic materials, J. Am. Ceram. Soc. 60 (7–8), 350 (1977). DOI: 10.1111/j.1151-2916.1977.tb15559.x.
  • A. Thankappan, and S. Thomas, Perovskite Photovoltaics: Basic to Advance Concepts and Implementation (Elsevier, Academic Press, 2018). ISBN 978-0-12-812915-9, DOI: 10.1016/C2016-0-03790-7.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.