Publication Cover
Integrated Ferroelectrics
An International Journal
Volume 240, 2024 - Issue 1
25
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Judd–Ofelt Analysis of Barium Zirconate Doped with Various Concentrations of Europium (III)

Pages 92-98 | Received 30 Jul 2023, Accepted 06 Dec 2023, Published online: 08 Feb 2024

References

  • Perovskite for clean energy, https://www.cei.washington.edu/education/science-of-solar/perovskite-solar-cell/ (accessed March 30, 2023).
  • Y. Parganiha et al., Synthesis and luminescence study of BaZrO3:Eu3+ phosphor, Superlattice. Microst 88, 262 (2015). DOI: 10.1016/j.spmi.2015.09.016.
  • A. Erb, E. Walker, and R. Flükiger, BaZrO3: The solution for the crucible corrosion problem during the single crystal growth of high-Tc superconductors REBa2Cu3O7 − δ; RE = Y, Pr, Phys. C. Superconductivity 245 (3–4), 245 (1995). DOI: 10.1016/0921-4534(95)00123-9.
  • R. Liang, D. A. Bonn, and W. N. Hardy, Growth of high quality YBCO single crystals using BaZrO3 crucibles, Phys. C. 304 (1–2), 105 (1998). DOI: 10.1016/S0921-4534(98)00275-5.
  • K. C. Goretta et al., Thermomechanical response of polycrystalline BaZrO3, Phys. C 309 (3–4), 245 (1998). DOI: 10.1016/S0921-4534(98)00588-7.
  • L. S. Cavalcante et al., Experimental and theoretical correlation of very intense visible green photoluminescence in BaZrO3 powders, J. Appl. Phys. 103 (art no. 063527) (2008).
  • F. D’Alessandro et al., Lean catalytic combustion for ultra-low emissions at high temperature in gas-turbine burners, Energy Fuels 25 (1), 136 (2011). DOI: 10.1021/ef100656y.
  • N. M. Kirby et al., Oxalate-precursor processing for high quality BaZrO3, J. Mater. Sci. 40 (1), 97 (2005). DOI: 10.1007/s10853-005-5692-3.
  • R. B. Cervera et al., Structural study and proton transport of bulk nanograined Y-doped BaZrO3 oxide protonics materials, Solid State Ionics 179 (7–8), 236 (2008). DOI: 10.1016/j.ssi.2008.01.082.
  • R. Vassen et al., Zirconates as new materials for thermal barrier coatings, J. Am. Ceram. Soc. 83 (8), 2023 (2000). DOI: 10.1111/j.1151-2916.2000.tb01506.x.
  • A. C. T. van Duin et al., ReaxFF reactive force field for the Y-doped BaZrO3 proton conductor with applications to diffusion rates for multigranular systems, J. Phys. Chem. A 112 (45), 11414 (2008). DOI: 10.1021/jp801082q.
  • S. V. Bhide, and A. V. Virkar, Stability of AB1 / 2 ′ B ″1 / 2 O3 ‐ type mixed perovskite proton conductors, J. Electrochem. Soc. 146 (12), 4386 (1999). DOI: 10.1149/1.1391888.
  • W. Munch et al., Proton diffusion in perovskites: comparison between BaCeO3, BaZrO3, SrTiO3, and CaTiO3 using quantum molecular dynamics, Solid State Ionics 136–137 (1–2), 183 (2000). DOI: 10.1016/S0167-2738(00)00304-0.
  • I. Grinberg, and A. M. Rappe, Silver solid solution piezoelectrics, Appl. Phys. Lett 85 (10), 1760 (2004). DOI: 10.1063/1.1787946.
  • J. Kaur et al., Photoluminescence characteristics of dysprosium doped CeO phosphor for white light emission, J. Display Technol. 12 (5), 506 (2016). DOI: 10.1109/JDT.2015.2503330.
  • Y. Parganiha et al., YAlO3:Ce3+ powders: synthesis, characterization, thermoluminescence and optical studies, Superlattice. Microst. 85, 410 (2015). DOI: 10.1016/j.spmi.2015.06.011.
  • R. Shrivastava, J. Kaur, and B. P. Chandra, Mechanoluminescence of Ba2MgSi2O7 doped with Eu(2+) and Dy(3+) phosphor by impulsive deformation, Luminescence 30 (8), 1207 (2015). DOI: 10.1002/bio.2882.
  • R. Singh et al., Intense visible light emission from dysprosium (Dy3+) doped barium titanate (BaTiO3) phosphor and its thermoluminescence study, J Mater Sci: Mater Electron 28 (18), 13690 (2017). DOI: 10.1007/s10854-017-7212-z.
  • R. Shrivastava, Photoluminescence studies of europium doped di-strontium magnesium silicate phosphors, JMNM 36, 31 (2023). DOI: 10.4028/p-x05t8g.
  • X. Li et al., Fluorescence quenching of 5 D J (J = 1, 2 and 3) levels and Judd–Ofelt analysis of Eu3+ in NaGdTiO4 phosphors, J. Phys. D: Appl. Phys 44 (33), 335403 (2011). DOI: 10.1088/0022-3727/44/33/335403.
  • B. Verma et al., Microstructural, luminescence properties and Judd-Ofelt analysis of Eu3+ activated K2Zr(PO4)2 phosphor for lighting and display applications, Opt. Mater. 129, 112459 (2022). DOI: 10.1016/j.optmat.2022.112459.
  • P. Goldner, and F. Auzel, Application of standard and modified Judd–Ofelt theories to a praseodymium-doped fluorozirconate glass, J. Appl. Phys. 79 (10), 7972 (1996). DOI: 10.1063/1.362347.
  • W. T. Carnall, P. R. Fields, and B. G. Wybourne, Spectral intensities of the trivalent lanthanides and actinides in solution. I. Pr3+, Nd3+, Er3+, Tm3+, and Yb3+, J. Chem. Phys. 42 (11), 3797 (1965). DOI: 10.1063/1.1695840.
  • A. Ćirić et al., Judd-Ofelt parametrization from emission spectra: the case study of the Eu3 + 5D1 emitting level, Chem. Phys 528, 110513 (2020). DOI: 10.1016/j.chemphys.2019.110513.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.