Publication Cover
Integrated Ferroelectrics
An International Journal
Volume 240, 2024 - Issue 1
114
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Modeling for Efficiency Enhancement of Perovskite Thin-Film Solar Cell by Using Double-Absorber and Buffer Layers

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 73-91 | Received 30 Jul 2023, Accepted 06 Nov 2023, Published online: 08 Feb 2024

References

  • A. Richter, M. Hermle, and S. W. Glunz, Reassessment of the limiting efficiency for crystalline silicon solar cells, IEEE J. Photovoltaics 3 (4), 1184 (2013). DOI: 10.1109/JPHOTOV.2013.2270351.
  • P. Sharma, and P. Goyal, Evolution of PV technology from conventional to nano-materials, Mater. Today Proc. 28, 1593 (2020). DOI: 10.1016/j.matpr.2020.04.846.
  • G. W. Crabtree, and N. S. Lewis, Physics of sustainable energy, using energy efficiently and producing it renewably, in Proceedings of the AIP Conference, Berkeley, CA, 1–2 Mar 2008, (American Institute of Physics: Melville, NY, 2018).
  • A. Goetzberger, C. Hebling, and H. W. Schock, Photovoltaic materials, history, status and outlook, Mater. Sci. Eng. R Rep. 40 (1), 1 (2003). DOI: 10.1016/S0927-796X(02)00092-X.
  • Nayeripour M., Mansouri M., Orooji F., Waffenschmidt E., editors. Solar Cells (IntechOpen Limited; London, UK, 2020), pp. 1–50.
  • T. Saga, Advances in crystalline silicon solar cell technology for industrial mass production, NPG Asia Mater. 2 (3), 96 (2010). DOI: 10.1038/asiamat.2010.82.
  • M. Law et al., Nanowire dye-sensitized solar cells, Nat. Mater. 4 (6), 455 (2005). DOI: 10.1038/nmat1387.
  • C. Lin, Stabilizing organic-inorganic lead halide perovskite solar cells with efficiency beyond 20, Front. Chem. 8, 592 (2020). PMID: 32850630; PMCID: PMC7399487. DOI: 10.3389/fchem.2020.00592.
  • B. Parida et al., Recent developments in upscalable printing techniques for perovskite solar cells, Adv. Sci. 9 (14), 2200308 (2022). DOI: 10.1002/advs.202200308.
  • T. C.-J. Yang et al., High-bandgap perovskite materials for multijunction solar cells, Joule 2 (8), 1421 (2018). DOI: 10.1016/j.joule.2018.05.008.
  • J. Panidi et al., Advances in organic and perovskite photovoltaics enabling a greener Internet of Things, Adv. Funct. Mater. 32 (23), 2200694 (2022). DOI: 10.1002/adfm.202200694.
  • Z. Hu et al., Enhanced performance of inverted perovskite solar cells using solution-processed carboxylic potassium salt as cathode buffer layer, Org. Electron. 45, 97 (2017). DOI: 10.1016/j.orgel.2017.02.041.
  • L. Huang et al., Efficient and hysteresis-less pseudo-planar heterojunction perovskite solar cells fabricated by a facile and solution-saving one-step dip-coating method, Org. Electron. 40, 13 (2017). DOI: 10.1016/j.orgel.2016.10.035.
  • S. Prathapani et al., TiO2 colloid-based compact layers for hybrid lead halide perovskite solar cells, Appl. Mater. Today 7, 112 (2017). DOI: 10.1016/j.apmt.2017.01.009.
  • L. Wang et al., Non-precious transition metals as counter electrode of perovskite solar cells, Energy Storage Mater. 7, 40 (2017). DOI: 10.1016/j.ensm.2016.11.007.
  • T. V. Dang et al., Utilization of AZO/Au/AZO multilayer electrodes instead of FTO for perovskite solar cells, Sol. Energy Mater. Sol. Cells 163, 58 (2017). DOI: 10.1016/j.solmat.2017.01.008.
  • Y. Zhou et al., Numerical analysis of a hysteresis model in perovskite solar cells, Comput. Mater. Sci. 126, 22 (2017). DOI: 10.1016/j.commatsci.2016.09.010.
  • S. Kim et al., Improved performance and thermal stability of perovskite solar cells prepared via a modified sequential deposition process, Org. Electron. 41, 266 (2017). DOI: 10.1016/j.orgel.2016.11.014.
  • J. Song et al., Performance enhancement of perovskite solar cells by doping TiO2 blocking layer with group VB elements, J. Alloy Compd. 694, 1232 (2017). DOI: 10.1016/j.jallcom.2016.10.106.
  • W. Li et al., Improvement of photovoltaic performance of perovskite solar cells with a ZnO/Zn2SnO4 composite compact layer, Sol. Energy Mater. Sol. Cells 159, 143 (2017). DOI: 10.1016/j.solmat.2016.09.007.
  • T. Ye et al., Temperature effect of the compact TiO2 layer in planar perovskite solar cells: An interfacial electrical, optical and carrier mobility study, Sol. Energy Mater. Sol. Cells 163, 242 (2017). DOI: 10.1016/j.solmat.2017.01.005.
  • J. Song et al., Morphology modification of perovskite film by a simple post-treatment process in perovskite solar cell, Mater. Sci. Eng. B 217, 18 (2017). DOI: 10.1016/j.mseb.2017.01.004.
  • A. Apostolopoulou et al., Enhanced performance of mesostructured perovskite solar cells in ambient conditions with a composite TiO2–In2O3 electron transport layer, Sol. Energy Mater. Sol. Cells 166, 100 (2017). DOI: 10.1016/j.solmat.2017.03.024.
  • X. Huang et al., Low-temperature processed SnO2 compact layer by incorporating TiO2 layer toward efficient planar heterojunction perovskite solar cells, Sol. Energy Mater. Sol. Cells 164, 87 (2017). DOI: 10.1016/j.solmat.2017.02.010.
  • G. Chen et al., Crack-free CH3NH3PbI3 layer via continuous dripping method for high-performance mesoporous perovskite solar cells, Appl. Surf. Sci. 392, 960 (2017). DOI: 10.1016/j.apsusc.2016.09.138.
  • A. K. Mishra, and R. K. Shukla, Simulation of photovoltaic material (donor blends PTB7:PC70BM) polymer for solar cell application, Mater. Today: Proc. 46 (Part 6), 2288 (2021). volume PagesISSN 2214-7853, DOI: 10.1016/j.matpr.2021.04.084.
  • A. K. Mishra, and R. K. Shukla, Effect of humidity in the perovskite solar cell, Mater. Today: Proc. 29, 836 (2020). DOI: 10.1016/j.matpr.2020.04.872.
  • A. Kumar Mishra, and R. K. Shukla, Fabrication and characterization of perovskite (CH3NH3PI3) solar cells, SN Appl. Sci. 2 (3), 321 (2020). DOI: 10.1007/s42452-020-2054-3.
  • R. K. Shukla, and A. Misra, Tuning of perovskite material for solar cell application, Int. J. Latest Trends Eng. Technol. 13 (3), 28 (2019). DOI: 10.21172/1.133.04.
  • M. Burgelman, P. Nollet, and S. Degrave, Modelling polycrystalline semiconductor solar cells, Thin Solid Films 361–362, 527 (2000). DOI: 10.1016/S0040-6090(99)00825-1.
  • K. Decock, S. Khelifi, and M. Burgelman, Modelling multivalent defects in thin film solar cells, Thin Solid Films 519 (21), 7481 (2011). DOI: 10.1016/j.tsf.2010.12.039.
  • M. Burgelman, and J. Marlein, Analysis of graded band gap solar cells with SCAPS, in Proceedings of the 23rd European Photovoltaic Solar Energy Conference, Valencia, 2008, pp. 2151–2155.
  • J. Verschraegen, and M. Burgelman, Numerical modeling of intra-band tunneling for heterojunction solar cells in SCAPS, Thin Solid Films 515 (15), 6276 (2007). DOI: 10.1016/j.tsf.2006.12.049.
  • S. Degrave, M. Burgelman, and P. Nollet, Modelling of polycrystalline thin film solar cells: new features in SCAPS version 2.3, in Proceedings of the 3rd World Conference on Photovoltaic Energy Conversion, Osaka, 2003, pp. 487–490.
  • A. Niemegeers, and M. Burgelman, Numerical modeling of ac-characteristics of CdTe and CIS solar cells, in Proceedings of the 25th IEEE Photovoltaic Specialists Conference, Washington DC, 1996, pp. 901–904.
  • Y. Wu et al., Organic–inorganic hybrid CH3NH3PbI3 perovskite materials as channels in thin-film field-effect transistors, RSC Adv. 6 (20), 16243 (2016). DOI: 10.1039/C5RA24154E.
  • S. Khatoon et al., Simulation study of CsPbIxBr1-x and MAPbI3 heterojunction solar cell using SCAPS-1D, Sol. Energy 254, 137 (2023). DOI: 10.1016/j.solener.2023.02.059.
  • N. Rai et al., Analysis of various ETL materials for an efficient perovskite solar cell by numerical simulation, J. Mater. Sci: Mater. Electron. 31 (19), 16269 (2020). DOI: 10.1007/s10854-020-04175-z.
  • P. Yang et al., The investigation of CsPb (I1−xBrx)3/crystalline silicon two-and four-terminal tandem solar cells, Sol. Energy 216, 145 (2021). DOI: 10.1016/j.solener.2021.01.041.
  • S. Dastidar et al., Slow electron–hole recombination in lead iodide perovskites does not require a molecular dipole, ACS Energy Lett. 2 (10), 2239 (2017). DOI: 10.1021/acsenergylett.7b00606.
  • P. Wang et al., Solvent-controlled growth of inorganic perovskite films in dry environment for efficient and stable solar cells, Nat. Commun. 9, 1 (2018).
  • E. M. Hutter, and T. J. Savenije, Thermally activated second-order recombination hints toward indirect recombination in fully inorganic CsPbI3 perovskites, ACS Energy Lett. 3 (9), 2068 (2018). DOI: 10.1021/acsenergylett.8b01106.
  • Bhardwaj, K.S., Rai, S., Sadanand et al. Investigating the performance of mixed cation mixed halide-based perovskite solar cells using various hole-transport materials by numerical simulation. Opt. Quant. Electron., 53 (11), 602 (2021). DOI: 10.1007/s11082-021-03262-7.
  • T. Minemoto, and M. Murata, Device modeling of perovskite solar cells based on structural similarity with thin film inorganic semiconductor solar cells, J. Appl. Phys., 116 (5) 054505-054505-6 (2014). DOI:10.1063/1.4891982.
  • Y. Huang, W.-J. Yin, and Y. He, Intrinsic point defects in inorganic cesium lead iodide perovskite CsPbI3, J. Phys. Chem. C 122 (2), 1345 (2018). DOI: 10.1021/acs.jpcc.7b10045.
  • D. Hazar Apaydın et al., Optimizing the organic solar cell efficiency: Role of the active layer thickness, Sol. Energy Mater. Sol. Cells 113, 100 (2013). DOI: 10.1016/j.solmat.2013.02.003.
  • J. Chen et al., High-performance thickness insensitive perovskite solar cells with enhanced moisture stability, Adv. Energy Mater. 8 (23) 1800438 (2018). DOI: 10.1002/aenm.201800438].
  • V. A. Trukhanov, V. V. Bruevich, and D. Y. Paraschuk, Effect of doping on performance of organic solar cells, Phys. Rev. B 84 (20), 205318 (2011). DOI: 10.1103/PhysRevB.84.205318.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.