897
Views
1
CrossRef citations to date
0
Altmetric
General Regression Methods

Functional Additive Models on Manifolds of Planar Shapes and Forms

, &
Pages 1600-1612 | Received 22 Nov 2021, Accepted 24 Dec 2022, Published online: 15 Mar 2023

References

  • Adams, D., Rohlf, F., and Slice, D. (2013), “A Field Comes of Age: Geometric Morphometrics in the 21st Century,” Hystrix, the Italian Journal of Mammalogy, 24, 7–14.
  • Backenroth, D., Goldsmith, J., Harran, M. D., Cortes, J. C., Krakauer, J. W., and Kitago, T. (2018), “Modeling Motor Learning Using Heteroscedastic Functional Principal Components Analysis,” Journal of the American Statistical Association, 113, 1003–1015.
  • Baranyi, P., Yam, Y., and Várlaki, P. (2013), Tensor Product Model Transformation in Polytopic Model-based Control, Boca Raton, FL: CRC Press.
  • Bonhomme, V., Picq, S., Gaucherel, C., and Claude, J. (2014), “Momocs: Outline Analysis using R,” Journal of Statistical Software, 56, 1–24.
  • Brockhaus, S., Melcher, M., Leisch, F., and Greven, S. (2017), “Boosting Flexible Functional Regression Models with a High Number of Functional Historical Effects,” Statistics and Computing, 27, 913–926.
  • Brockhaus, S., Rügamer, D., and Greven, S. (2020), “Boosting Functional Regression Models with FDboost,” Journal of Statistical Software, 94, 1–50.
  • Brockhaus, S., Scheipl, F., and Greven, S. (2015), “The Functional Linear Array Model,” Statistical Modelling, 15, 279–300.
  • Bühlmann, P., and Yu, B. (2003), “Boosting with the L2 Loss: Regression and Classification,” Journal of the American Statistical Association, 98, 324–339.
  • Clutton-Brock, J., Dennis-Bryan, K., Armitage, P. L., and Jewell, P. A. (1990), “Osteology of the Soay Sheep,” Bulletin of the British Museum (Natural History), 56, 1–56.
  • Cornea, E., Zhu, H., Kim, P., Ibrahim, J. G., and the Alzheimer’s Disease Neuroimaging Initiative. (2017), “Regression Models on Riemannian Symmetric Spaces,” Journal of the Royal Statistical Society, Series B, 79, 463–482.
  • Davis, B. C., Fletcher, P. T., Bullitt, E., and Joshi, S. (2010), “Population Shape Regression from Random Design Data,” International Journal of Computer Vision, 90, 255–266.
  • Dryden, I. L., and Mardia, K. V. (2016), Statistical Shape Analysis: With Applications in R, Chichjester: Wiley.
  • Ferraty, F., Goia, A., Salinelli, E., and Vieu, P. (2011), “Recent Advances on Functional Additive Regression,” in Recent Advances in Functional Data Analysis and Related Topics, ed. F. Ferraty, pp. 97–102, Heidelberg: Springer.
  • Fletcher, P. T. (2013), “Geodesic Regression and the Theory of Least Squares on Riemannian Manifolds,” International Journal of Computer Vision, 105, 171–185.
  • Greven, S., and Scheipl, F. (2017), “A General Framework for Functional Regression Modelling,” (with discussion and rejoinder), Statistical Modelling, 17(1–2), 1–35 and 100–115.
  • Happ, C., and Greven, S. (2018), “Multivariate Functional Principal Component Analysis for Data Observed on Different (Dimensional) Domains,” Journal of the American Statistical Association, 113, 649–659.
  • Hinkle, J., Fletcher, P. T., and Joshi, S. (2014), “Intrinsic Polynomials for Regression on Riemannian Manifolds,” Journal of Mathematical Imaging and Vision, 50, 32–52.
  • Hofner, B., Hothorn, T., Kneib, T., and Schmid, M. (2011), “A Framework for Unbiased Model Selection Based on Boosting,” Journal of Computational and Graphical Statistics, 20, 956–971.
  • Hofner, B., Kneib, T., and Hothorn, T. (2016), “A Unified Framework of Constrained Regression,” Statistics and Computing, 26, 1–14.
  • Hong, Y., Singh, N., Kwitt, R., and Niethammer, M. (2014), “Time-Warped Geodesic Regression,” in International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 105–112, Springer.
  • Hothorn, T., Bühlmann, P., Kneib, T., Schmid, M., and Hofner, B. (2010), “Model-based Boosting 2.0,” Journal of Machine Learning Research, 11, 2109–2113.
  • Huckemann, S., Hotz, T., and Munk, A. (2010), “Intrinsic MANOVA for Riemannian Manifolds with an Application to Kendall’s Space of Planar Shapes,” IEEE Transactions on Pattern Analysis and Machine Intelligence, 32, 593–603.
  • Jeon, J. M., and Park, B. U. (2020), “Additive Regression with Hilbertian Responses,” The Annals of Statistics, 48, 2671–2697.
  • Jeon, J. M., Lee, Y. K., Mammen, E., and Park, B. U. (2022), “Locally Polynomial Hilbertian Additive Regression,” Bernoulli, 28, 2034–2066.
  • Jeon, J. M., Park, B. U., and Van Keilegom, I. (2021), “Additive Regression for Non-Euclidean Responses and Predictors,” The Annals of Statistics, 49, 2611–2641.
  • Jupp, P. E., and Kent, J. T. (1987), “Fitting Smooth Paths to Spherical Data,” Journal of the Royal Statistical Society, Series C, 36, 34–46.
  • Karcher, H. (1977), “Riemannian Center of Mass and Mollifier Smoothing,” Communications on Pure and Applied Mathematics, 30, 509–541.
  • Kendall, D. G., Barden, D., Carne, T. K., and Le, H. (1999), Shape and Shape Theory (Vol. 500), Chichester: Wiley.
  • Kent, J. T., Mardia, K. V., Morris, R. J., and Aykroyd, R. G. (2001), “Functional Models of Growth for Landmark Data,” in Proceedings in Functional and Spatial Data Analysis, 109115.
  • Kim, H. J., Adluru, N., Collins, M. D., Chung, M. K., Bendlin, B. B., Johnson, S. C., Davidson, R. J., and Singh, V. (2014), “Multivariate General Linear Models (mglm) on Riemannian Manifolds with Applications to Statistical Analysis of Diffusion Weighted Images,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2705–2712.
  • Kim, H. J., Adluru, N., Suri, H., Vemuri, B. C., Johnson, S. C., and Singh, V. (2017), “Riemannian Nonlinear Mixed Effects Models: Analyzing Longitudinal Deformations in Neuroimaging,” in 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5777–5786.
  • Klingenberg, W. (1995), Riemannian Geometry, Berlin: de Gruyter.
  • Kneib, T., Hothorn, T., and Tutz, G. (2009), “Variable Selection and Model Choice in Geoadditive Regression Models,” Biometrics, 65, 626–634. DOI: 10.1111/j.1541-0420.2008.01112.x.
  • Kume, A., Dryden, I. L., and Le, H. (2007), “Shape-Space Smoothing Splines for Planar Landmark Data,” Biometrika, 94, 513–528.
  • Lay, D. M. (1967), “A Study of the Mammals of Iran: Resulting from the Street Expedition of 1962-63,” in Fieldiana: Zoology 54. Field Museum of Natural History.
  • Li, Y., and Ruppert, D. (2008), “On the Asymptotics of Penalized Splines,” Biometrika, 95, 415–436.
  • Lin, L., St. Thomas, B., Zhu, H., and Dunson, D. B. (2017), “Extrinsic Local Regression on Manifold-Valued Data,” Journal of the American Statistical Association, 112, 1261–1273. DOI: 10.1080/01621459.2016.1208615.
  • Lin, Z., Müller, H.-G., and Park, B. U. (2020), “Additive Models for Symmetric Positive-Definite Matrices, Riemannian Manifolds and Lie Groups,” arXiv preprint arXiv:2009.08789.
  • Lutz, R. W., and Bühlmann, P. (2006), “Boosting for High-Multivariate Responses in High-Dimensional Linear Regression,” Statistica Sinica, 16, 471–494.
  • Mallasto, A., and Feragen, A. (2018), “Wrapped Gaussian Process Regression on Riemannian Manifolds,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5580–5588.
  • Mayr, A., Binder, H., Gefeller, O., and Schmid, M. (2014), “The Evolution of Boosting Algorithms,” Methods of Information in Medicine, 53, 419–427. DOI: 10.3414/ME13-01-0122.
  • Meyer, M. J., Coull, B. A., Versace, F., Cinciripini, P., and Morris, J. S. (2015), “Bayesian Function-on-Function Regression for Multilevel Functional Data,” Biometrics, 71, 563–574. DOI: 10.1111/biom.12299.
  • Morris, J. S. (2015), “Functional Regression,” Annual Review of Statistics and its Applications, 2, 321–359.
  • Morris, J. S., and Carroll, R. J. (2006), “Wavelet-based Functional Mixed Models,” Journal of the Royal Statistical Society, Series B, 68, 179–199. DOI: 10.1111/j.1467-9868.2006.00539.x.
  • Müller, H.-G., and Yao, F. (2008), “Functional Additive Models,” Journal of the American Statistical Association, 103, 1534–1544.
  • Muralidharan, P., and Fletcher, P. T. (2012), “Sasaki Metrics for Analysis of Longitudinal Data on Manifolds,” in 2012 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1027–1034, IEEE.
  • Olsen, N. L., Markussen, B., and Raket, L. L. (2018), “Simultaneous Inference for Misaligned Multivariate Functional Data,” Journal of the Royal Statistical Society, Series C, 67, 1147–1176.
  • Pennec, X. (2006), “Intrinsic Statistics on Riemannian Manifolds: Basic Tools for Geometric Measurements,” Journal of Mathematical Imaging and Vision, 25, 127–154.
  • Petersen, A., and Müller, H.-G. (2019), “Fréchet Regression for Random Objects with Euclidean Predictors,” The Annals of Statistics, 47, 691–719.
  • Pigoli, D., Menafoglio, A., and Secchi, P. (2016), “Kriging Prediction for Manifold-Valued Random Fields,” Journal of Multivariate Analysis, 145, 117–131.
  • Pöllath, N., Schafberg, R., and Peters, J. (2019), “Astragalar Morphology: Approaching the Cultural Trajectories of Wild and Domestic Sheep Applying Geometric Morphometrics,” Journal of Archaeological Science: Reports, 23, 810–821.
  • R Core Team (2018), R: A Language and Environment for Statistical Computing, Vienna, Austria: R Foundation for Statistical Computing.
  • Ramsay, J. O., and Silverman, B. W. (2005), Functional Data Analysis, New York: Springer.
  • Rosen, O., and Thompson, W. K. (2009), “A Bayesian Regression Model for Multivariate Functional Data,” Computational Statistics & Data Analysis, 53, 3773–3786. DOI: 10.1016/j.csda.2009.03.026.
  • Schafberg, R., and Wussow, J. (2010), “Julius Kühn. Das Lebenswerk eines agrarwissenschaftlichen Visionärs,” Züchtungskunde, 82, 468–484.
  • Schaffer, S. A. (2021), “Cytoskeletal Dynamics in Confined Cell Migration: Experiment and Modelling,” PhD thesis, LMU Munich. DOI: 10.5282/edoc.28480.
  • Scheipl, F., Staicu, A.-M., and Greven, S. (2015), “Functional Additive Mixed Models,” Journal of Computational and Graphical Statistics, 24, 477–501. DOI: 10.1080/10618600.2014.901914.
  • Schiratti, J.-B., Allassonnière, S., Colliot, O., and Durrleman, S. (2017), “A Bayesian Mixed-Effects Model to Learn Trajectories of Changes from Repeated Manifold-Valued Observations,” The Journal of Machine Learning Research, 18, 4840–4872.
  • Shi, X., Styner, M., Lieberman, J., Ibrahim, J. G., Lin, W., and Zhu, H. (2009), “Intrinsic Regression Models for Manifold-Valued Data,” in International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 192–199, Springer.
  • Srivastava, A., and Klassen, E. P. (2016), Functional and Shape Data Analysis, New York: Springer-Verlag.
  • Stöcker, A., Brockhaus, S., Schaffer, S. A., Bronk, B. v., Opitz, M., and Greven, S. (2021), “Boosting Functional Response Models for Location, Scale and Shape with an Application to Bacterial Competition,” Statistical Modelling, 21, 385–404.
  • Stöcker, A., Pfeuffer, M., Steyer, L., and Greven, S. (2022), “Elastic Full Procrustes Analysis of Plane Curves via Hermitian Covariance Smoothing.” DOI: 10.48550/arXiv.2203.10522.
  • Thüroff, F., Goychuk, A., Reiter, M., and Frey, E. (2019), “Bridging the Gap between Single-Cell Migration and Collective Dynamics,” eLife, 8, e46842.
  • Volkmann, A., Stöcker, A., Scheipl, F., and Greven, S. (2021), “Multivariate Functional Additive Mixed Models,” Statistical Modelling. DOI: 10.1177/1471082X211056158.
  • Wood, S. N., Pya, N., and Säfken, B. (2016), “Smoothing Parameter and Model Selection for General Smooth Models,” Journal of the American Statistical Association, 111, 1548–1563.
  • Yao, F., Müller, H., and Wang, J. (2005), “Functional Data Analysis for Sparse Longitudinal Data,” Journal of the American Statistical Association, 100, 577–590.
  • Zeder, M. A. (2006), “Reconciling Rates of Long Bone Fusion and Tooth Eruption and Wear in Sheep (Ovis) and Goat (Capra),” Recent Advances in Ageing and Sexing Animal Bones, 9, 87–118.
  • Zhu, H., Chen, Y., Ibrahim, J. G., Li, Y., Hall, C., and Lin, W. (2009), “Intrinsic Regression Models for Positive-Definite Matrices with Applications to Diffusion Tensor Imaging,” Journal of the American Statistical Association, 104, 1203–1212.
  • Zhu, H., Li, R., and Kong, L. (2012), “Multivariate Varying Coefficient Model for Functional Responses,” Annals of Statistics, 40, 2634–2666.
  • Zhu, H., Morris, J. S., Wei, F., and Cox, D. D. (2017), “Multivariate Functional Response Regression, with Application to Fluorescence Spectroscopy in a Cervical Pre-cancer Study,” Computational Statistics and Data Analysis, 111, 88–101.