357
Views
3
CrossRef citations to date
0
Altmetric
Review Articles

Application of single-atom-based photocatalysts in environmental pollutant removal and renewable energy production

, , , , , , , , & ORCID Icon show all
Pages 909-930 | Published online: 25 Nov 2023

References

  • Babucci, M., Guntida, A., & Gates, B. C. (2020). Atomically dispersed metals on well-defined supports including zeolites and metal-organic frameworks: Structure, bonding, reactivity, and catalysis. Chemical Reviews, 120(21), 11956–11985. https://doi.org/10.1021/acs.chemrev.0c00864
  • Bavykina, A., Kolobov, N., Khan, I. S., Bau, J. A., Ramirez, A., & Gascon, J. (2020). Metal-organic frameworks in heterogeneous catalysis: Recent progress, new trends, and future perspectives. Chemical Reviews, 120(16), 8468–8535. https://doi.org/10.1021/acs.chemrev.9b00685
  • Bi, W., Hu, Y., Jiang, H., Zhang, L., & Li, C. (2021). Revealing the sudden alternation in Pt@h‐BN nanoreactors for nearly 100% CO2‐to‐CH4 photoreduction. Advanced Functional Materials, 31(29), 2010780. https://doi.org/10.1002/adfm.202010780
  • Bo, Y., Wang, H., Lin, Y., Yang, T., Ye, R., Li, Y., Hu, C., Du, P., Hu, Y., Liu, Z., Long, R., Gao, C., Ye, B., Song, L., Wu, X., & Xiong, Y. (2021). Altering hydrogenation pathways in photocatalytic nitrogen fixation by tuning local electronic structure of oxygen vacancy with dopant. Angewandte Chemie (International ed. in English), 60(29), 16085–16092. https://doi.org/10.1002/anie.202104001
  • Cao, H., Wang, J., Kim, J.-H., Guo, Z., Xiao, J., Yang, J., Chang, J., Shi, Y., & Xie, Y. (2021). Different roles of Fe atoms and nanoparticles on g-C3N4 in regulating the reductive activation of ozone under visible light. Applied Catalysis B: Environmental, 296, 120362. https://doi.org/10.1016/j.apcatb.2021.120362
  • Cao, Y., Wang, D., Lin, Y., Liu, W., Cao, L., Liu, X., Zhang, W., Mou, X., Fang, S., Shen, X., & Yao, T. (2018). Single Pt atom with highly vacant d-orbital for accelerating photocatalytic H2 evolution. ACS Applied Energy Materials, 1(11), 6082–6088. https://doi.org/10.1021/acsaem.8b01143
  • Chang, X., Xu, S., Wang, D., Zhang, Z., Guo, Y., & Kang, S. (2022). Flash dual-engineering of surface carboxyl defects and single Cu atoms of g-C3N4 via unique CO2 plasma immersion approach for boosted photocatalytic activity. Materials Today Advances, 15, 100274. https://doi.org/10.1016/j.mtadv.2022.100274
  • Chen, J., Chen, L., Wang, X., Rao, Z., Sun, J., Chen, A., & Xie, X. (2022). Rare-earth single atoms decorated 2D-TiO2 nanosheets for the photodegradation of gaseous O-xylene. Journal of Colloid and Interface Science, 605, 674–684. https://doi.org/10.1016/j.jcis.2021.07.129
  • Chen, J., Chen, L., Wang, X., Sun, J., Chen, A., & Xie, X. (2022). Er single atoms decorated TiO2 and Er3+ ions modified TiO2 for photocatalytic oxidation of mixed VOCs. Applied Surface Science, 596, 153655. https://doi.org/10.1016/j.apsusc.2022.153655
  • Chen, S., Takata, T., & Domen, K. (2017). Particulate photocatalysts for overall water splitting. Nature Reviews Materials, 2(10), 17050. https://doi.org/10.1038/natrevmats.2017.50
  • Chen, S., Zhou, Y., Li, J., Hu, Z., Dong, F., Hu, Y., Wang, H., Wang, L., Ostrikov, K. K., & Wu, Z. (2020). Single-atom Ru-implanted metal–organic framework/MnO2 for the highly selective oxidation of NOx by plasma activation. ACS Catalysis, 10(17), 10185–10196. https://doi.org/10.1021/acscatal.0c02001
  • Chen, Y., Ji, S., Chen, C., Peng, Q., Wang, D., & Li, Y. (2018). Single-atom catalysts: Synthetic strategies and electrochemical applications. Joule, 2(7), 1242–1264. https://doi.org/10.1016/j.joule.2018.06.019
  • Chen, Z., Li, Y., Cai, Y., Wang, S., Hu, B., Li, B., Ding, X., Zhuang, L., & Wang, X. (2023). Application of covalent organic frameworks and metal–organic frameworks nanomaterials in organic/inorganic pollutants removal from solutions through sorption-catalysis strategies. Carbon Research, 2(1), 8. https://doi.org/10.1007/s44246-023-00041-9
  • Chen, Z., Wang, J., Hao, M., Xie, Y., Liu, X., Yang, H., Waterhouse, G. I. N., Wang, X., & Ma, S. (2023). Tuning excited state electronic structure and charge transport in covalent organic frameworks for enhanced photocatalytic performance. Nature Communications, 14(1), 1106. https://doi.org/10.1038/s41467-023-36710-x
  • Cheng, G., Liu, X., Song, X., Chen, X., Dai, W., Yuan, R., & Fu, X. (2020). Visible-light-driven deep oxidation of NO over Fe doped TiO2 catalyst: Synergic effect of Fe and oxygen vacancies. Applied Catalysis B: Environmental, 277, 119196. https://doi.org/10.1016/j.apcatb.2020.119196
  • Cheng, L., Yue, X., Wang, L., Zhang, D., Zhang, P., Fan, J., & Xiang, Q. (2021). Dual‐single‐atom tailoring with bifunctional integration for high‐performance CO2 photoreduction. Advanced Materials, 33(49), e2105135. https://doi.org/10.1002/adma.202105135
  • Dai, Z., Zhen, Y., Sun, Y., Li, L., & Ding, D. (2021). ZnFe2O4/g-C3N4 S-scheme photocatalyst with enhanced adsorption and photocatalytic activity for uranium(VI) removal. Chemical Engineering Journal, 415, 129002. https://doi.org/10.1016/j.cej.2021.129002
  • Ding, J., Xu, W., Wan, H., Yuan, D., Chen, C., Wang, L., Guan, G., & Dai, W.-L. (2018). Nitrogen vacancy engineered graphitic C3N4-based polymers for photocatalytic oxidation of aromatic alcohols to aldehydes. Applied Catalysis B: Environmental, 221, 626–634. https://doi.org/10.1016/j.apcatb.2017.09.048
  • Dong, C., Lian, C., Hu, S., Deng, Z., Gong, J., Li, M., Liu, H., Xing, M., & Zhang, J. (2018). Size-dependent activity and selectivity of carbon dioxide photocatalytic reduction over platinum nanoparticles. Nature Communications, 9(1), 1252. https://doi.org/10.1038/s41467-018-03666-2
  • Dong, P., Wang, Y., Zhang, A., Cheng, T., Xi, X., & Zhang, J. (2021). Platinum single atoms anchored on a covalent organic framework: Boosting active sites for photocatalytic hydrogen evolution. ACS Catalysis, 11(21), 13266–13279. https://doi.org/10.1021/acscatal.1c03441
  • Dong, Z., Zhang, L., Gong, J., & Zhao, Q. (2021). Covalent organic framework nanorods bearing single Cu sites for efficient photocatalysis. Chemical Engineering Journal, 403, 126383. https://doi.org/10.1016/j.cej.2020.126383
  • Duan, P., Pan, J., Du, W., Yue, Q., Gao, B., & Xu, X. (2021). Activation of peroxymonosulfate via mediated electron transfer mechanism on single-atom Fe catalyst for effective organic pollutants removal. Applied Catalysis B: Environmental, 299, 120714. https://doi.org/10.1016/j.apcatb.2021.120714
  • Fan, M., Jimenez, J. D., Shirodkar, S. N., Wu, J., Chen, S., Song, L., Royko, M. M., Zhang, J., Guo, H., Cui, J., Zuo, K., Wang, W., Zhang, C., Yuan, F., Vajtai, R., Qian, J., Yang, J., Yakobson, B. I., Tour, J. M., … Ajayan, P. M. (2019). Atomic Ru immobilized on porous h-BN through simple vacuum filtration for highly active and selective CO2 methanation. ACS Catalysis, 9(11), 10077–10086. https://doi.org/10.1021/acscatal.9b02197
  • Fang, L., Huang, T., Lu, H., Wu, X., Chen, Z., Yang, H., Wang, S., Tang, Z., Li, Z., Hu, B., & Wang, X. (2023). Biochar-based materials in environmental pollutants elimination, H2 production and CO2 capture applications. Biochar, 5(1), 42. https://doi.org/10.1007/s42773-023-00237-7
  • Fang, X., Shang, Q., Wang, Y., Jiao, L., Yao, T., Li, Y., Zhang, Q., Luo, Y., & Jiang, H. L. (2018). Single Pt atoms confined into a metal-organic framework for efficient photocatalysis. Advanced Materials, 30(7), 1705112. https://doi.org/10.1002/adma.201705112
  • Fu, N., Liang, X., Li, Z., Chen, W., Wang, Y., Zheng, L., Zhang, Q., Chen, C., Wang, D., Peng, Q., Gu, L., & Li, Y. (2020). Fabricating Pd isolated single atom sites on C3N4/rGO for heterogenization of homogeneous catalysis. Nano Research, 13(4), 947–951. https://doi.org/10.1007/s12274-020-2720-1
  • Fujiwara, K., & Pratsinis, S. E. (2018). Single Pd atoms on TiO2 dominate photocatalytic NOx removal. Applied Catalysis B: Environmental, 226, 127–134. https://doi.org/10.1016/j.apcatb.2017.12.042
  • Gao, C., Low, J., Long, R., Kong, T., Zhu, J., & Xiong, Y. (2020). Heterogeneous single-atom photocatalysts: Fundamentals and applications. Chemical Reviews, 120(21), 12175–12216. https://doi.org/10.1021/acs.chemrev.9b00840
  • Gao, W., Li, S., He, H., Li, X., Cheng, Z., Yang, Y., Wang, J., Shen, Q., Wang, X., Xiong, Y., Zhou, Y., & Zou, Z. (2021). Vacancy-defect modulated pathway of photoreduction of CO2 on single atomically thin AgInP2S6 sheets into olefiant gas. Nature Communications, 12(1), 4747. https://doi.org/10.1038/s41467-021-25068-7
  • Gong, Y. N., Zhong, W., Li, Y., Qiu, Y., Zheng, L., Jiang, J., & Jiang, H. L. (2020). Regulating photocatalysis by spin-state manipulation of cobalt in covalent organic frameworks. Journal of the American Chemical Society, 142(39), 16723–16731. https://doi.org/10.1021/jacs.0c07206
  • Guo, S., Li, X., Li, J., & Wei, B. (2021). Boosting photocatalytic hydrogen production from water by photothermally induced biphase systems. Nature Communications, 12(1), 1343. https://doi.org/10.1038/s41467-021-21526-4
  • Guo, X. W., Chen, S. M., Wang, H. J., Zhang, Z. M., Lin, H., Song, L., & Lu, T. B. (2019). Single-atom molybdenum immobilized on photoactive carbon nitride as efficient photocatalysts for ambient nitrogen fixation in pure water. Journal of Materials Chemistry A, 7(34), 19831–19837. https://doi.org/10.1039/C9TA06653E
  • Guo, Y., Zhou, Q., Nan, J., Shi, W., Cui, F., & Zhu, Y. (2022). Perylenetetracarboxylic acid nanosheets with internal electric fields and anisotropic charge migration for photocatalytic hydrogen evolution. Nature Communications, 13(1), 2067. https://doi.org/10.1038/s41467-022-29826-z
  • Han, M. F., Hu, X. R., Wang, Y. C., Tong, Z., Wang, C., Cheng, Z. W., Feng, K., Qu, M. M., Chen, J. M., Deng, J. G., & Hsi, H. C. (2020). Comparison of separated and combined photodegradation and biofiltration technology for the treatment of volatile organic compounds: A critical review. Critical Reviews in Environmental Science and Technology, 52(8), 1325–1355. https://doi.org/10.1080/10643389.2020.1854566
  • Hao, M., Chen, Z., Liu, X., Liu, X., Zhang, J., Yang, H., Waterhouse, G. I. N., Wang, X., & Ma, S. (2022). Converging cooperative functions into the nanospace of covalent organic frameworks for efficient uranium extraction from seawater. CCS Chemistry, 4(7), 2294–2307. https://doi.org/10.31635/ccschem.022.202201897
  • Hao, M., Liu, Y., Wu, W., Wang, S., Yang, Y., Chen, Z., Tang, Z., Huang, Q., Wang, S., Yang, H., & Wang, X. (2023). Advanced porous adsorbents for radionuclides elimination. EnergyChem, 5(4), 100101. https://doi.org/10.1016/j.enchem.2023.100101
  • Hao, M., Xie, Y., Liu, X., Chen, Z., Yang, H., Waterhouse, G. I. N., Ma, S., & Wang, X. (2023). Modulating uranium extraction performance of multivariate covalent organic frameworks through donor-acceptor linkers and amidoxime nanotraps. JACS Au, 3(1), 239–251. https://doi.org/10.1021/jacsau.2c00614
  • Hisatomi, T., & Domen, K. (2019). Reaction systems for solar hydrogen production via water splitting with particulate semiconductor photocatalysts. Nature Catalysis, 2(5), 387–399. https://doi.org/10.1038/s41929-019-0242-6
  • Hu, J., Chen, D., Li, N., Xu, Q., Li, H., He, J., & Lu, J. (2018). 3D aerogel of graphitic carbon nitride modified with perylene imide and graphene oxide for highly efficient nitric oxide removal under visible light. Small, 14(19), e1800416. https://doi.org/10.1002/smll.201800416
  • Hu, L., Wang, T., Nie, Q., Liu, J., Cui, Y., Zhang, K., Tan, Z., & Yu, H. (2022). Single Pd atoms anchored graphitic carbon nitride for highly selective and stable photocatalysis of nitric oxide. Carbon, 200, 187–198. https://doi.org/10.1016/j.carbon.2022.08.031
  • Hu, Y., Zhan, F., Wang, Q., Sun, Y., Yu, C., Zhao, X., Wang, H., Long, R., Zhang, G., Gao, C., Zhang, W., Jiang, J., Tao, Y., & Xiong, Y. (2020). Tracking mechanistic pathway of photocatalytic CO2 reaction at Ni sites using operando, time-resolved spectroscopy. Journal of the American Chemical Society, 142(12), 5618–5626. https://doi.org/10.1021/jacs.9b12443
  • Huang, W., Byun, J., Rorich, I., Ramanan, C., Blom, P. W. M., Lu, H., Wang, D., Caire da Silva, L., Li, R., Wang, L., Landfester, K., & Zhang, K. A. I. (2018). Asymmetric covalent triazine framework for enhanced visible-light photoredox catalysis via energy transfer cascade. Angewandte Chemie (International ed. in English), 57(27), 8316–8320. https://doi.org/10.1002/anie.201801112
  • Jeong, H., Shin, D., Kim, B. S., Bae, J., Shin, S., Choe, C., Han, J. W., & Lee, H. (2020). Controlling the oxidation state of Pt single atoms for maximizing catalytic activity. Angewandte Chemie (International ed. in English), 59(46), 20691–20696. https://doi.org/10.1002/anie.202009776
  • Ji, S., Qu, Y., Wang, T., Chen, Y., Wang, G., Li, X., Dong, J., Chen, Q., Zhang, W., Zhang, Z., Liang, S., Yu, R., Wang, Y., Wang, D., & Li, Y. (2020). Rare-earth single erbium atoms for enhanced photocatalytic CO2 reduction. Angewandte Chemie (International ed. in English), 59(26), 10651–10657. https://doi.org/10.1002/anie.202003623
  • Jia, G., Sun, M., Wang, Y., Cui, X., Huang, B., & Yu, J. C. (2022). Enabling efficient photocatalytic hydrogen evolution via in situ loading of Ni single atomic sites on red phosphorus quantum dots. Advanced Functional Materials, 33(10), 2212051. https://doi.org/10.1002/adfm.202212051
  • Jiao, L., Yan, H., Wu, Y., Gu, W., Zhu, C., Du, D., & Lin, Y. (2020). When nanozymes meet single-atom catalysis. Angewandte Chemie (International ed. in English), 59(7), 2565–2576. https://doi.org/10.1002/anie.201905645
  • Jin, S., Dong, G., Luo, J., Ma, F., & Wang, C. (2018). Improved photocatalytic NO removal activity of SrTiO3 by using SrCO3 as a new co-catalyst. Applied Catalysis B: Environmental, 227, 24–34. https://doi.org/10.1016/j.apcatb.2018.01.020
  • Karimi-Maleh, H., Kumar, B. G., Rajendran, S., Qin, J., Vadivel, S., Durgalakshmi, D., Gracia, F., Soto-Moscoso, M., Orooji, Y., & Karimi, F. (2020). Tuning of metal oxides photocatalytic performance using Ag nanoparticles integration. Journal of Molecular Liquids, 314, 113588. https://doi.org/10.1016/j.molliq.2020.113588
  • Khandelwal, A., Maarisetty, D., & Baral, S. S. (2022). Fundamentals and application of single-atom photocatalyst in sustainable energy and environmental applications. Renewable and Sustainable Energy Reviews, 167, 112693. https://doi.org/10.1016/j.rser.2022.112693
  • Kim, K. K., Lee, H. S., & Lee, Y. H. (2018). Synthesis of hexagonal boron nitride heterostructures for 2D van der Waals electronics. Chemical Society Reviews, 47(16), 6342–6369. https://doi.org/10.1039/c8cs00450a
  • Leng, R., Sun, Y., Feng, R., Zhao, G., Qu, Z., Wang, C., Han, B., Wang, J., Ji, Z., & Wang, X. (2023). Design and fabrication of hypercrosslinked covalent organic adsorbents for selective uranium extraction. Environmental Science & Technology, 57(26), 9615–9626. https://doi.org/10.1021/acs.est.3c02916
  • Leybo, D., Firestein, K. L., Evdokimenko, N. D., Ryzhova, A. A., Baidyshev, V. S., Chepkasov, I. V., Popov, Z. I., Kustov, A. L., Konopatsky, A. S., Golberg, D. V., & Shtansky, D. V. (2022). Ball-milled processed, selective Fe/h-BN nanocatalysts for CO2 hydrogenation. ACS Applied Nano Materials, 5(11), 16475–16488. https://doi.org/10.1021/acsanm.2c03540
  • Li, C., Dong, X., Zhang, Y., Hu, J., Yuan, J., Li, G., Chen, D., & Li, Y. (2022). Micro-tailored g-C3N4 enables Ru single-atom loading for efficient photocatalytic H2 evolution. Applied Surface Science, 596, 153471. https://doi.org/10.1016/j.apsusc.2022.153471
  • Li, C., Liu, J., Li, H., Wu, K., Wang, J., & Yang, Q. (2022). Covalent organic frameworks with high quantum efficiency in sacrificial photocatalytic hydrogen evolution. Nature Communications, 13(1), 2357. https://doi.org/10.1038/s41467-022-30035-x
  • Li, J., Huang, H., Liu, P., Song, X., Mei, D., Tang, Y., Wang, X., & Zhong, C. (2019). Metal-organic framework encapsulated single-atom Pt catalysts for efficient photocatalytic hydrogen evolution. Journal of Catalysis, 375, 351–360. https://doi.org/10.1016/j.jcat.2019.06.024
  • Li, J., Liu, P., Tang, Y., Huang, H., Cui, H., Mei, D., & Zhong, C. (2020). Single-atom Pt–N3 sites on the stable covalent triazine framework nanosheets for photocatalytic N2 fixation. ACS Catalysis, 10(4), 2431–2442. https://doi.org/10.1021/acscatal.9b04925
  • Li, P., Wang, J., Wang, Y., Liang, J., Pan, D., Qiang, S., & Fan, Q. (2019). An overview and recent progress in the heterogeneous photocatalytic reduction of U(VI). Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 41, 100320. https://doi.org/10.1016/j.jphotochemrev.2019.100320
  • Li, W., Li, W., Guo, Z., Song, Y., Tang, S., Ma, Y., Xing, X., & Wang, Q. (2021). Synthesis of atomically thin g-C3N4 nanosheets via supercritical CO2 doping with single-atom cobalt for photocatalytic hydrogen evolution. ACS Applied Materials & Interfaces, 13(44), 52560–52570. https://doi.org/10.1021/acsami.1c13933
  • Li, X., Yu, J., Jaroniec, M., & Chen, X. (2019). Cocatalysts for selective photoreduction of CO2 into solar fuels. Chemical Reviews, 119(6), 3962–4179. https://doi.org/10.1021/acs.chemrev.8b00400
  • Li, Y., Ho, W., Lv, K., Zhu, B., & Lee, S. C. (2018). Carbon vacancy-induced enhancement of the visible light-driven photocatalytic oxidation of NO over g-C3N4 nanosheets. Applied Surface Science, 430, 380–389. https://doi.org/10.1016/j.apsusc.2017.06.054
  • Li, Y., Wang, S., Wang, X. S., He, Y., Wang, Q., Li, Y., Li, M., Yang, G., Yi, J., Lin, H., Huang, D., Li, L., Chen, H., & Ye, J. (2020). Facile top-down strategy for direct metal atomization and coordination achieving a high turnover number in CO2 photoreduction. Journal of the American Chemical Society, 142(45), 19259–19267. https://doi.org/10.1021/jacs.0c09060
  • Li, Y., Wen, H., Yang, J., Zhou, Y., & Cheng, X. (2019). Boosting oxygen reduction catalysis with N, F, and S tri-doped porous graphene: Tertiary N-precursors regulates the constitution of catalytic active sites. Carbon, 142, 1–12. https://doi.org/10.1016/j.carbon.2018.09.079
  • Li, Z., Qiu, S., Song, Y., Huang, S., Gao, J., Sun, L., & Hou, J. (2022). Engineering single-atom active sites anchored covalent organic frameworks for efficient metallaphotoredox CN cross-coupling reactions. Science Bulletin, 67(19), 1971–1981. https://doi.org/10.1016/j.scib.2022.09.010
  • Liu, G., Huang, Y., Lv, H., Wang, H., Zeng, Y., Yuan, M., Meng, Q., & Wang, C. (2021). Confining single-atom Pd on g-C3N4 with carbon vacancies towards enhanced photocatalytic NO conversion. Applied Catalysis B: Environmental, 284, 119683. https://doi.org/10.1016/j.apcatb.2020.119683
  • Liu, W., Cao, L., Cheng, W., Cao, Y., Liu, X., Zhang, W., Mou, X., Jin, L., Zheng, X., Che, W., Liu, Q., Yao, T., & Wei, S. (2017). Single-site active cobalt-based photocatalyst with a long carrier lifetime for spontaneous overall water splitting. Angewandte Chemie (International ed. in English), 56(32), 9312–9317. https://doi.org/10.1002/anie.201704358
  • Liu, X., Gong, K., Duan, X., Wei, W., Wang, T., Chen, Z., Zhang, L., & Ni, B.-J. (2023). Photo-induced bismuth single atoms on TiO2 for highly efficient photocatalytic defluorination of perfluorooctanoic acid: Ionization of the C-F bond. ACS ES&T Engineering, 3(10), 1626–1636. https://doi.org/10.1021/acsestengg.3c00177
  • Liu, X., Li, Y., Chen, Z., Yang, H., Wang, S., Tang, Z., & Wang, X. (2023). Recent progress of COFs membranes: Design, synthesis and application in water treatment. Eco-Environment & Health, 2(3), 117–130. https://doi.org/10.1016/j.eehl.2023.07.001
  • Liu, X., Xie, Y., Li, Y., Hao, M., Chen, Z., Yang, H., Waterhouse, G. I. N., Ma, S., & Wang, X. (2023). Functional carbon capsules supporting ruthenium nanoclusters for efficient electrocatalytic 99TcO4-/ReO4- removal from acidic and alkaline nuclear wastes. Advanced Science, 10(30), e2303536. https://doi.org/10.1002/advs.202303536
  • Low, J., Cheng, B., & Yu, J. (2017). Surface modification and enhanced photocatalytic CO2 reduction performance of TiO2: A review. Applied Surface Science, 392, 658–686. https://doi.org/10.1016/j.apsusc.2016.09.093
  • Lu, Y., Kuo, C.-T., Kovarik, L., Hoffman, A. S., Boubnov, A., Driscoll, D. M., Morris, J. R., Bare, S. R., & Karim, A. M. (2019). A versatile approach for quantification of surface site fractions using reaction kinetics: The case of CO oxidation on supported Ir single atoms and nanoparticles. Journal of Catalysis, 378, 121–130. https://doi.org/10.1016/j.jcat.2019.08.023
  • Ma, X., Liu, H., Yang, W., Mao, G., Zheng, L., & Jiang, H. L. (2021). Modulating coordination environment of single-atom catalysts and their proximity to photosensitive units for boosting MOF photocatalysis. Journal of the American Chemical Society, 143(31), 12220–12229. https://doi.org/10.1021/jacs.1c05032
  • Ma, Y., Han, X., Xu, S., Wang, Z., Li, W., da Silva, I., Chansai, S., Lee, D., Zou, Y., Nikiel, M., Manuel, P., Sheveleva, A. M., Tuna, F., McInnes, E. J. L., Cheng, Y., Rudić, S., Ramirez-Cuesta, A. J., Haigh, S. J., Hardacre, C., Schröder, M., & Yang, S. (2021). Atomically dispersed copper sites in a metal-organic framework for reduction of nitrogen dioxide. Journal of the American Chemical Society, 143(29), 10977–10985. https://doi.org/10.1021/jacs.1c03036
  • Miao, Z., Wang, X., Zhao, Z., Zuo, W., Chen, S., Li, Z., He, Y., Liang, J., Ma, F., Wang, H. L., Lu, G., Huang, Y., Wu, G., & Li, Q. (2021). Improving the stability of non-noble-metal M-N-C catalysts for proton-exchange-membrane fuel cells through M-N bond length and coordination regulation. Advanced Materials, 33(39), e2006613. https://doi.org/10.1002/adma.202006613
  • Mo, Q., Zhang, L., Li, S., Song, H., Fan, Y., & Su, C. Y. (2022). Engineering single-atom sites into pore-confined nanospaces of porphyrinic metal-organic frameworks for the highly efficient photocatalytic hydrogen evolution reaction. Journal of the American Chemical Society, 144(49), 22747–22758. https://doi.org/10.1021/jacs.2c10801
  • Movalli, P., Krone, O., Osborn, D., & Pain, D. (2018). Monitoring contaminants, emerging infectious diseases and environmental change with raptors, and links to human health. Bird Study, 65(sup1), S96–S109. https://doi.org/10.1080/00063657.2018.1506735
  • Niu, Q., Mi, L. H., Chen, W., Li, Q. J., Zhong, S. H., Yu, Y., & Li, L. Y. (2023). Review of covalent organic frameworks for single‐site photocatalysis and electrocatalysis. Chinese Journal of Catalysis, 50, 45–82. https://doi.org/10.1016/S1872-2067(23)64457-2
  • Niu, X., Zhu, Q., Jiang, S., & Zhang, Q. (2020). Photoexcited electron dynamics of nitrogen fixation catalyzed by ruthenium single-atom catalysts. The Journal of Physical Chemistry Letters, 11(22), 9579–9586. https://doi.org/10.1021/acs.jpclett.0c02833
  • Olowoyo, J. O., Kumar, M., Singhal, N., Jain, S. L., Babalola, J. O., Vorontsov, A. V., & Kumar, U. (2018). Engineering and modeling the effect of Mg doping in TiO2 for enhanced photocatalytic reduction of CO2 to fuels. Catalysis Science & Technology, 8(14), 3686–3694. https://doi.org/10.1039/C8CY00987B
  • Pan, D., Xiao, S., Chen, X., Li, R., Cao, Y., Zhang, D., Pu, S., Li, Z., Li, G., & Li, H. (2019). Efficient photocatalytic fuel cell via simultaneous visible-photoelectrocatalytic degradation and electricity generation on a porous coral-like WO3/W photoelectrode. Environmental Science & Technology, 53(7), 3697–3706. https://doi.org/10.1021/acs.est.8b05685
  • Pan, G., Zhang, W., Liu, T., Tan, Q., Wei, B., Ye, K., Yang, Y., Han, D., Liu, Z., & Niu, L. (2023). Atomically dispersed s-block metal calcium site modified mesoporous g-C3N4 for boosting photocatalytic N2 reduction. Catalysis Science & Technology, 13(1), 111–118. https://doi.org/10.1039/D2CY01507B
  • Pascanu, V., Gonzalez Miera, G., Inge, A. K., & Martin-Matute, B. (2019). Metal-organic frameworks as catalysts for organic synthesis: A critical perspective. Journal of the American Chemical Society, 141(18), 7223–7234. https://doi.org/10.1021/jacs.9b00733
  • Rajabi, H., Hadi Mosleh, M., Prakoso, T., Ghaemi, N., Mandal, P., Lea-Langton, A., & Sedighi, M. (2021). Competitive adsorption of multicomponent volatile organic compounds on biochar. Chemosphere, 283, 131288. https://doi.org/10.1016/j.chemosphere.2021.131288
  • Ran, L., Li, Z., Ran, B., Cao, J., Zhao, Y., Shao, T., Song, Y., Leung, M. K. H., Sun, L., & Hou, J. (2022). Engineering single-atom active sites on covalent organic frameworks for boosting CO2 photoreduction. Journal of the American Chemical Society, 144(37), 17097–17109. https://doi.org/10.1021/jacs.2c06920
  • Ren, G., Shi, M., Liu, S., Li, Z., Zhang, Z., & Meng, X. (2023). Molecular-level insight into photocatalytic reduction of N2 over ruthenium single atom modified TiO2 by electronic metal-support interaction. Chemical Engineering Journal, 454, 140158. https://doi.org/10.1016/j.cej.2022.140158
  • Ren, Y., Tang, Y., Zhang, L., Liu, X., Li, L., Miao, S., Sheng Su, D., Wang, A., Li, J., & Zhang, T. (2019). Unraveling the coordination structure-performance relationship in Pt1/Fe2O3 single-atom catalyst. Nature Communications, 10(1), 4500. https://doi.org/10.1038/s41467-019-12459-0
  • Rogge, S. M. J., Bavykina, A., Hajek, J., Garcia, H., Olivos-Suarez, A. I., Sepulveda-Escribano, A., Vimont, A., Clet, G., Bazin, P., Kapteijn, F., Daturi, M., Ramos-Fernandez, E. V., Llabres, I. X. F. X., Van Speybroeck, V., & Gascon, J. (2017). Metal-organic and covalent organic frameworks as single-site catalysts. Chemical Society Reviews, 46(11), 3134–3184. https://doi.org/10.1039/c7cs00033b
  • Shang, S., Xiong, W., Yang, C., Johannessen, B., Liu, R., Hsu, H. Y., Gu, Q., Leung, M. K. H., & Shang, J. (2021). Atomically dispersed iron metal site in a porphyrin-based metal-organic framework for photocatalytic nitrogen fixation. ACS Nano, 15(6), 9670–9678. https://doi.org/10.1021/acsnano.0c10947
  • Shang, Y., Xu, X., Gao, B., Wang, S., & Duan, X. (2021). Single-atom catalysis in advanced oxidation processes for environmental remediation. Chemical Society Reviews, 50(8), 5281–5322. https://doi.org/10.1039/d0cs01032d
  • Shen, Z.-K., Cheng, M., Yuan, Y.-J., Pei, L., Zhong, J., Guan, J., Li, X., Li, Z.-J., Bao, L., Zhang, X., Yu, Z.-T., & Zou, Z. (2021). Identifying the role of interface chemical bonds in activating charge transfer for enhanced photocatalytic nitrogen fixation of Ni2P-black phosphorus photocatalysts. Applied Catalysis B: Environmental, 295, 120274. https://doi.org/10.1016/j.apcatb.2021.120274
  • Sherryna, A., & Tahir, M. (2022). Role of surface morphology and terminating groups in titanium carbide MXenes (Ti3C2Tx) cocatalysts with engineering aspects for modulating solar hydrogen production: A critical review. Chemical Engineering Journal, 433, 134573. https://doi.org/10.1016/j.cej.2022.134573
  • Sun, J., Lu, C., Song, Y., Ji, Q., Song, X., Li, Q., Zhang, Y., Zhang, L., Kong, J., & Liu, Z. (2018). Recent progress in the tailored growth of two-dimensional hexagonal boron nitride via chemical vapour deposition. Chemical Society Reviews, 47(12), 4242–4257. https://doi.org/10.1039/c8cs00167g
  • Sun, L., Han, L., Huang, J., Luo, X., & Li, X. (2022). Single-atom catalysts for photocatalytic hydrogen evolution: A review. International Journal of Hydrogen Energy, 47(40), 17583–17599. https://doi.org/10.1016/j.ijhydene.2022.03.259
  • Sun, Y., Liu, X., Zhu, M., Zhang, Z., Chen, Z., Wang, S., Ji, Z., Yang, H., & Wang, X. (2023). Synthesis of nonnoble single metal atom-based catalysts for CO2 electrochemical reduction. DeCarbon, 2, 100018. https://doi.org/10.1016/j.decarb.2023.100018
  • Tu, W., Yang, Y., Chen, C., Zhou, T., Li, T., Wang, H., Wu, S., Zhou, Y., O’Hare, D., Zou, Z., & Xu, R. (2022). Cu–O/N single sites incorporated 2D covalent organic framework ultrathin nanobelts for highly selective visible‐light-driven CO2 reduction to CO. Small Structures, 4(6), 2200233. https://doi.org/10.1002/sstr.202200233
  • Wang, A., Li, J., & Zhang, T. (2018). Heterogeneous single-atom catalysis. Nature Reviews Chemistry, 2(6), 65–81. https://doi.org/10.1038/s41570-018-0010-1
  • Wang, B., Cai, H., & Shen, S. (2019). Single metal atom photocatalysis. Small Methods, 3(9), 1800447. https://doi.org/10.1002/smtd.201800447
  • Wang, F., Wang, Y., Li, Y., Cui, X., Zhang, Q., Xie, Z., Liu, H., Feng, Y., Lv, W., & Liu, G. (2018). The facile synthesis of a single atom-dispersed silver-modified ultrathin g-C3N4 hybrid for the enhanced visible-light photocatalytic degradation of sulfamethazine with peroxymonosulfate. Dalton Transactions, 47(20), 6924–6933. https://doi.org/10.1039/c8dt00919h
  • Wang, G., Wu, Y., Li, Z., Lou, Z., Chen, Q., Li, Y., Wang, D., & Mao, J. (2023). Engineering a copper single-atom electron bridge to achieve efficient photocatalytic CO2 conversion. Angewandte Chemie (International ed. in English), 62(13), e202218460. https://doi.org/10.1002/anie.202218460
  • Wang, H., Qian, C., Liu, J., Zeng, Y., Wang, D., Zhou, W., Gu, L., Wu, H., Liu, G., & Zhao, Y. (2020). Integrating suitable linkage of covalent organic frameworks into covalently bridged inorganic/organic hybrids toward efficient photocatalysis. Journal of the American Chemical Society, 142(10), 4862–4871. https://doi.org/10.1021/jacs.0c00054
  • Wang, H., Wang, H., Wang, Z., Tang, L., Zeng, G., Xu, P., Chen, M., Xiong, T., Zhou, C., Li, X., Huang, D., Zhu, Y., Wang, Z., & Tang, J. (2020). Covalent organic framework photocatalysts: Structures and applications. Chemical Society Reviews, 49(12), 4135–4165. https://doi.org/10.1039/d0cs00278j
  • Wang, L., Chen, W., Zhang, D., Du, Y., Amal, R., Qiao, S., Wu, J., & Yin, Z. (2019). Surface strategies for catalytic CO2 reduction: From two-dimensional materials to nanoclusters to single atoms. Chemical Society Reviews, 48(21), 5310–5349. https://doi.org/10.1039/c9cs00163h
  • Wang, M., Wang, B., Huang, F., & Lin, Z. (2019). Enabling PIEZOpotential in PIEZOelectric semiconductors for enhanced catalytic activities. Angewandte Chemie (International ed. in English), 58(23), 7526–7536. https://doi.org/10.1002/anie.201811709
  • Wang, Q. S., Zhang, D. F., Chen, Y., Fu, W. F., & Lv, X. J. (2019). Single-atom catalysts for photocatalytic reactions. ACS Sustainable Chemistry & Engineering, 7(7), 6430–6443. https://doi.org/10.1021/acssuschemeng.8b06273
  • Wang, S., Chen, Z., Cai, Y., Wu, X., Wang, S., Tang, Z., Hu, B., Li, Z., & Wang, X. (2023). Application of COFs in capture/conversion of CO2 and elimination of organic/inorganic pollutants. Environmental Functional Materials, 2(1), 76–92. https://doi.org/10.1016/j.efmat.2023.03.001
  • Wei, W., Luo, J., Liu, S., Zhou, Y., & Ma, J. (2022). Enhancing the photocatalytic performance of g-C3N4 by using iron single-atom doping for the reduction of U(VI) in aqueous solutions. Journal of Solid State Chemistry, 312, 123160. https://doi.org/10.1016/j.jssc.2022.123160
  • Wei, Y. S., Zhang, M., Zou, R., & Xu, Q. (2020). Metal-organic framework-based catalysts with single metal sites. Chemical Reviews, 120(21), 12089–12174. https://doi.org/10.1021/acs.chemrev.9b00757
  • Weon, S., Kim, J., & Choi, W. (2018). Dual-components modified TiO2 with Pt and fluoride as deactivation-resistant photocatalyst for the degradation of volatile organic compound. Applied Catalysis B: Environmental, 220, 1–8. https://doi.org/10.1016/j.apcatb.2017.08.036
  • Wu, F., Pan, C., He, C. T., Han, Y., Ma, W., Wei, H., Ji, W., Chen, W., Mao, J., Yu, P., Wang, D., Mao, L., & Li, Y. (2020). Single-atom Co-N4 electrocatalyst enabling four-electron oxygen reduction with enhanced hydrogen peroxide tolerance for selective sensing. Journal of the American Chemical Society, 142(39), 16861–16867. https://doi.org/10.1021/jacs.0c07790
  • Wu, P., Jin, X., Qiu, Y., & Ye, D. (2021). Recent progress of thermocatalytic and photo/thermocatalytic oxidation for VOCs purification over manganese-based oxide catalysts. Environmental Science & Technology, 55(8), 4268–4286. https://doi.org/10.1021/acs.est.0c08179
  • Wu, S., Chen, Z., Yue, W., Mine, S., Toyao, T., Matsuoka, M., Xi, X., Wang, L., & Zhang, J. (2021). Single-atom high-valent Fe(IV) for promoted photocatalytic nitrogen hydrogenation on porous TiO2-SiO2. ACS Catalysis, 11(7), 4362–4371. https://doi.org/10.1021/acscatal.1c00072
  • Xiao, J., Chen, S., Jin, J., Li, R., Zhang, J., & Peng, T. (2021). Brookite TiO2 nanoparticles decorated with Ag/MnOx dual cocatalysts for remarkably boosted photocatalytic performance of the CO2 reduction reaction. Langmuir: The ACS Journal of Surfaces and Colloids, 37(42), 12487–12500. https://doi.org/10.1021/acs.langmuir.1c02282
  • Xiao, S., Zhang, D., Pan, D., Zhu, W., Liu, P., Cai, Y., Li, G., & Li, H. (2019). A chloroplast structured photocatalyst enabled by microwave synthesis. Nature Communications, 10(1), 1570. https://doi.org/10.1038/s41467-019-09509-y
  • Xiong, H., Datye, A. K., & Wang, Y. (2021). Thermally stable single-atom heterogeneous catalysts. Advanced Materials, 33(50), e2004319. https://doi.org/10.1002/adma.202004319
  • Xu, T., Zheng, H., & Zhang, P. (2020). Isolated Pt single atomic sites anchored on nanoporous TiO2 film for highly efficient photocatalytic degradation of low concentration toluene. Journal of Hazardous Materials, 388, 121746. https://doi.org/10.1016/j.jhazmat.2019.121746
  • Xue, Z.-H., Luan, D., Zhang, H., & Lou, X. W. (2022). Single-atom catalysts for photocatalytic energy conversion. Joule, 6(1), 92–133. https://doi.org/10.1016/j.joule.2021.12.011
  • Yan, G., Zheng, Y., Tang, Q., Ning, M., & Lei, Y. (2021). Incorporating VOC emission control in china’s hazardous waste regulatory system. Environmental Science & Technology, 55(23), 15569–15571. https://doi.org/10.1021/acs.est.1c03207
  • Yang, C., Pei, C., Luo, R., Liu, S., Wang, Y., Wang, Z., Zhao, Z. J., & Gong, J. (2020). Strong electronic oxide-support interaction over In2O3/ZrO2 for highly selective CO2 hydrogenation to methanol. Journal of the American Chemical Society, 142(46), 19523–19531. https://doi.org/10.1021/jacs.0c07195
  • Yang, H., Hao, M. J., Xie, Y. H., Liu, X. L., Liu, Y. F., Chen, Z. S., Wang, X. K., Waterhouse, G. I. N., & Ma, S. Q. (2023). Tuning local charge distribution in multicomponent covalent organic frameworks for dramatically enhanced photocatalytic uranium extraction. Angewandte Chemie (International ed. in English), 62(30), e202303. https://doi.org/10.1002/anie.202303129
  • Yang, J., Chen, B., Liu, X., Liu, W., Li, Z., Dong, J., Chen, W., Yan, W., Yao, T., Duan, X., Wu, Y., & Li, Y. (2018). Efficient and robust hydrogen evolution: Phosphorus nitride imide nanotubes as supports for anchoring single ruthenium sites. Angewandte Chemie (International ed. in English), 57(30), 9495–9500. https://doi.org/10.1002/anie.201804854
  • Yang, J., Liu, W., Xu, M., Liu, X., Qi, H., Zhang, L., Yang, X., Niu, S., Zhou, D., Liu, Y., Su, Y., Li, J. F., Tian, Z. Q., Zhou, W., Wang, A., & Zhang, T. (2021). Dynamic behavior of single-atom catalysts in electrocatalysis: Identification of Cu-N3 as an active site for the oxygen reduction reaction. Journal of the American Chemical Society, 143(36), 14530–14539. https://doi.org/10.1021/jacs.1c03788
  • Yang, T., Mao, X., Zhang, Y., Wu, X., Wang, L., Chu, M., Pao, C. W., Yang, S., Xu, Y., & Huang, X. (2021). Coordination tailoring of Cu single sites on C3N4 realizes selective CO2 hydrogenation at low temperature. Nature Communications, 12(1), 6022. https://doi.org/10.1038/s41467-021-26316-6
  • Yang, X., Liu, X., Liu, Y., Wang, X., Chen, Z., & Wang, X. (2023). Optimizing iodine capture performance by metal − organic framework containing with bipyridine units. Frontiers of Chemical Science and Engineering, 17(4), 395–403. https://doi.org/10.1007/s11705-022-2218-3
  • Yang, X., Wu, W., Xie, Y., Hao, M., Liu, X., Chen, Z., Yang, H., Waterhouse, G. I. N., Ma, S., & Wang, X. (2023). Modulating anion nanotraps via halogenation for high efficiency 99TcO4− removal under wide − ranging conditions. Environmental Science & Technology, 57(29), 10870–10881. https://doi.org/10.1021/acs.est.3c02967
  • Yu, Q., Dai, Y., Ling, Y., Wu, Q., Zhang, Z., & Feng, B. (2022). Z-scheme heterojunction WO3/BiOBr supported-single Fe atom for ciprofloxacin degradation via visible-light photocatalysis. Journal of Environmental Chemical Engineering, 10(6), 108693. https://doi.org/10.1016/j.jece.2022.108693
  • Yue, X., Ma, N. L., Sonne, C., Guan, R., Lam, S. S., Van Le, Q., Chen, X., Yang, Y., Gu, H., Rinklebe, J., & Peng, W. (2021). Mitigation of indoor air pollution: A review of recent advances in adsorption materials and catalytic oxidation. Journal of Hazardous Materials, 405, 124138. https://doi.org/10.1016/j.jhazmat.2020.124138
  • Zhang, H., Zuo, S., Qiu, M., Wang, S., Zhang, Y., Zhang, J., & Lou, X. W. D. (2020). Direct probing of atomically dispersed Ru species over multi-edged TiO2 for highly efficient photocatalytic hydrogen evolution. Science Advances, 6(39), eabb9823. https://doi.org/10.1126/sciadv.abb9823
  • Zhang, J.-H., Wei, M.-J., Wei, Z.-W., Pan, M., & Su, C.-Y. (2020). Ultrathin graphitic carbon nitride nanosheets for photocatalytic hydrogen evolution. ACS Applied Nano Materials, 3(2), 1010–1018. https://doi.org/10.1021/acsanm.9b02590
  • Zhang, K., Thé, J., Xie, G., & Yu, H. (2020). Multi-step ahead forecasting of regional air quality using spatial-temporal deep neural networks: A case study of Huaihai Economic Zone. Journal of Cleaner Production, 277, 123231. https://doi.org/10.1016/j.jclepro.2020.123231
  • Zhang, M., Lu, M., Lang, Z. L., Liu, J., Liu, M., Chang, J. N., Li, L. Y., Shang, L. J., Wang, M., Li, S. L., & Lan, Y. Q. (2020). Semiconductor/covalent-organic-framework Z-scheme heterojunctions for artificial photosynthesis. Angewandte Chemie (International ed. in English), 59(16), 6500–6506. https://doi.org/10.1002/anie.202000929
  • Zhang, N., Jalil, A., Wu, D., Chen, S., Liu, Y., Gao, C., Ye, W., Qi, Z., Ju, H., Wang, C., Wu, X., Song, L., Zhu, J., & Xiong, Y. (2018). Refining defect states in W18O49by Mo doping: A strategy for tuning N2 activation towards solar-driven nitrogen fixation. Journal of the American Chemical Society, 140(30), 9434–9443. https://doi.org/10.1021/jacs.8b02076
  • Zhang, Q., Gao, S., Guo, Y., Wang, H., Wei, J., Su, X., Zhang, H., Liu, Z., & Wang, J. (2023). Designing covalent organic frameworks with Co-O4 atomic sites for efficient CO2 photoreduction. Nature Communications, 14(1), 1147. https://doi.org/10.1038/s41467-023-36779-4
  • Zhang, X., Liu, J., Zheng, X., Chen, R., Zhang, M., Liu, Z., Wang, Z., & Li, J. (2023). Activation of oxalic acid via dual-pathway over single-atom Fe catalysts: Mechanism and membrane application. Applied Catalysis B: Environmental, 321, 122068. https://doi.org/10.1016/j.apcatb.2022.122068
  • Zhang, Y., Wang, Q., Yang, S., Wang, H., Rao, D., Chen, T., Wang, G., Lu, J., Zhu, J., Wei, S., Zheng, X., & Zeng, J. (2022). Tuning the interaction between ruthenium single atoms and the second coordination sphere for efficient nitrogen photofixation. Advanced Functional Materials, 32(12), 2112452. https://doi.org/10.1002/adfm.202112452
  • Zhao, J., Zhang, Z., Chen, X., Wang, B., Deng, J., Zhang, D., & Li, H. (2020). Microwave-induced assembly of CuS@MoS2 core-shell nanotubes and study on their photocatalytic fenton-like reactions. Acta Chimica Sinica, 78(9), 961. https://doi.org/10.6023/A20060244
  • Zhao, Q., Sun, J., Li, S., Huang, C., Yao, W., Chen, W., Zeng, T., Wu, Q., & Xu, Q. (2018). Single nickel atoms anchored on nitrogen-doped graphene as a highly active cocatalyst for photocatalytic H2 evolution. ACS Catalysis, 8(12), 11863–11874. https://doi.org/10.1021/acscatal.8b03737
  • Zhao, Q., Yao, W., Huang, C., Wu, Q., & Xu, Q. (2017). Effective and durable Co single atomic cocatalysts for photocatalytic hydrogen production. ACS Applied Materials & Interfaces, 9(49), 42734–42741. https://doi.org/10.1021/acsami.7b13566
  • Zhao, S., Chen, G., Zhou, G., Yin, L. C., Veder, J. P., Johannessen, B., Saunders, M., Yang, S. Z., De Marco, R., Liu, C., & Jiang, S. P. (2019). A universal seeding strategy to synthesize single atom catalysts on 2D materials for electrocatalytic applications. Advanced Functional Materials, 30(6), 1906157. https://doi.org/10.1002/adfm.201906157
  • Zhao, Z., Zhang, W., Liu, W., Li, Y., Ye, J., Liang, J., & Tong, M. (2021). Activation of sulfite by single-atom Fe deposited graphitic carbon nitride for diclofenac removal: The synergetic effect of transition metal and photocatalysis. Chemical Engineering Journal, 407, 127167. https://doi.org/10.1016/j.cej.2020.127167
  • Zheng, Z., Cox, M., & Li, B. (2017). Surface modification of hexagonal boron nitride nanomaterials: A review. Journal of Materials Science, 53(1), 66–99. https://doi.org/10.1007/s10853-017-1472-0
  • Zhong, M., Tran, K., Min, Y., Wang, C., Wang, Z., Dinh, C. T., De Luna, P., Yu, Z., Rasouli, A. S., Brodersen, P., Sun, S., Voznyy, O., Tan, C. S., Askerka, M., Che, F., Liu, M., Seifitokaldani, A., Pang, Y., Lo, S. C., … Sargent, E. H. (2020). Accelerated discovery of CO2 electrocatalysts using active machine learning. Nature, 581(7807), 178–183. https://doi.org/10.1038/s41586-020-2242-8
  • Zhou, M., Wang, Z., Mei, A., Yang, Z., Chen, W., Ou, S., Wang, S., Chen, K., Reiss, P., Qi, K., Ma, J., & Liu, Y. (2023). Photocatalytic CO2 reduction using La-Ni bimetallic sites within a covalent organic framework. Nature Communications, 14(1), 2473. https://doi.org/10.1038/s41467-023-37545-2
  • Zhou, P., Zhang, Q., Xu, Z., Shang, Q., Wang, L., Chao, Y., Li, Y., Chen, H., Lv, F., Zhang, Q., Gu, L., & Guo, S. (2019). Atomically dispersed Co–P3 on CdS nanorods with electron‐rich feature boosts photocatalysis. Advanced Materials, 32, 1904249. https://doi.org/10.1002/adma.201904249
  • Zhu, J., & Mu, S. (2020). Defect engineering in carbon‐based electrocatalysts: Insight into intrinsic carbon defects. Advanced Functional Materials, 30(25), 2001097. https://doi.org/10.1002/adfm.202001097
  • Zuo, Q., Liu, T., Chen, C., Ji, Y., Gong, X., Mai, Y., & Zhou, Y. (2019). Ultrathin metal-organic framework nanosheets with ultrahigh loading of single Pt atoms for efficient visible-light-driven photocatalytic H2 evolution. Angewandte Chemie (International ed. in English), 58(30), 10198–10203. https://doi.org/10.1002/anie.201904058
  • Zuo, S., Li, D., Guan, Z., Yang, F., Xia, D., & Huang, M. (2022). Utilization of sewage resources through efficient solar-water evaporation by single-atom Cu sites. Carbon, 187, 207–215. https://doi.org/10.1016/j.carbon.2021.11

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.