290
Views
1
CrossRef citations to date
0
Altmetric
Review Articles

Effects of microplastics on substance transformation, sludge characteristics, toxicological effect, and microbial communities in different biochemical sludge systems: A review

, , , , , , & show all
Pages 931-952 | Published online: 24 Nov 2023

References

  • Ali, I., Ding, T. D., Peng, C. S., Naz, I., Sun, H. B., Li, J. Y., & Liu, J. F. (2021). Micro- and nanoplastics in wastewater treatment plants: Occurrence, removal, fate, impacts and remediation technologies – A critical review. Chemical Engineering Journal and the Biochemical Engineering Journal. 423, 130205. https://doi.org/10.1016/j.cej.2021.130205
  • Apel, K., & Hirt, H. (2004). Reactive oxygen species: Metabolism, oxidative stress, and signal transduction. Annual Review of Plant Biology, 55(1), 373–399. https://doi.org/10.1146/annurev.arplant.55.031903.141701
  • Auta, H. S., Emenike, C. U., & Fauziah, S. H. (2017). Distribution and importance of microplastics in the marine environment: A review of the sources, fate, effects, and potential solutions. Environment International, 102, 165–176. https://doi.org/10.1016/j.envint.2017.02.013
  • Brian, B. M., Cime, S., Rodgers, L., Li, T. D., Zhang, S., & Wang, T. (2022). Short-term exposure to soils and sludge induce changes to plastic morphology and 13C stable isotopic composition. The Science of the Total Environment, 821, 153375. https://doi.org/10.1016/j.scitotenv.2022.153375
  • Chen, D. Y., Wei, Z. Z., Wang, Z. M., Yang, Y. K., Chen, L., Wang, X. H., & Zhao, L. (2022). Long-term exposure to nanoplastics reshapes the microbial interaction network of activated sludge. Environmental Pollution (Barking, Essex: 1987), 314, 120205. https://doi.org/10.1016/j.envpol.2022.120205
  • Chen, Y. G., Zhang, Y., & Zhang, Z. Z. (2021). Occurrence, effects, and biodegradation of plastic additives in sludge anaerobic digestion: A review. Environmental Pollution (Barking, Essex: 1987), 287, 117568. https://doi.org/10.1016/j.envpol.2021.117568
  • Chouchene, K., Da Costa, J. P., Chamkha, M., Ksibi, M., & Sayadi, S. (2023). Effects of microplastics’ physical and chemical properties on aquatic organisms: State-of-the-art and future research trends. TrAC Trends in Analytical Chemistry, 166, 117192. https://doi.org/10.1016/j.trac.2023.117192
  • Cui, Y. C., Gao, J. F., Zhang, D., Li, D. C., Dai, H. H., Wang, Z. Q., & Zhao, Y. F. (2021). Responses of performance, antibiotic resistance genes and bacterial communities of partial nitrification system to polyamide microplastics. Bioresource Technology, 341, 125767. https://doi.org/10.1016/j.biortech.2021.125767
  • Dai, H. H., Gao, J. F., Li, D. C., Wang, Z. Q., Zhao, Y. F., & Cui, Y. C. (2022). Polyvinyl chloride microplastics changed risks of antibiotic resistance genes propagation by enhancing the removal of triclosan in partial denitrification systems with different carbon source. Chemical Engineering Journal and the Biochemical Engineering Journal. 429, 132465. https://doi.org/10.1016/j.cej.2021.132465
  • Dai, H. H., Gao, J. F., Wang, Z. Q., Zhao, Y. F., & Zhang, D. (2020). Behavior of nitrogen, phosphorus and antibiotic resistance genes under polyvinyl chloride microplastics pressures in an aerobic granular sludge system. Journal of Cleaner Production, 256, 120402. https://doi.org/10.1016/j.jclepro.2020.120402
  • Dinan, K. (2023). Three ways to solve the plastics pollution crisis. Nature, 616(7956), 234–237. https://doi.org/10.1038/d41586-023-00975-5
  • Ding, F., Liang, D. B., Wu, Y. D., Li, D. Y., Bian, W., & Li, J. (2020). Effect of C/N on partial nitrification in an MBBR at low temperature. Environmental Science: Water Research & Technology, 6(12), 3391–3399. https://doi.org/10.1039/D0EW00654H
  • El Hayany, B., Rumpel, C., Hafidi, M., & El Fels, L. (2022). Occurrence, analysis of microplastics in sewage sludge and their fate during composting: A literature review. Journal of Environmental Management, 317, 115364. https://doi.org/10.1016/j.jenvman.2022.115364
  • Fard, N., Mohammadi, M. J., & Jahedi, F. (2023). Effects of nano and microplastics on the reproduction system: In vitro and in vivo studies review. Food and Chemical Toxicology: An International Journal Published for the British Industrial Biological Research Association, 178, 113938.
  • Feng, L. J., Wang, J. J., Liu, S. C., Sun, X. D., Yuan, X. Z., & Wang, S. G. (2018). Role of extracellular polymeric substances in the acute inhibition of activated sludge by polystyrene nanoparticles. Environmental Pollution (Barking, Essex: 1987), 238, 859–865. https://doi.org/10.1016/j.envpol.2018.03.101
  • Gillibert, R., Balakrishnan, G., Deshoules, Q., Tardivel, M., Magazzù, A., Donato, M. G., Maragò, O. M., Lamy de La Chapelle, M., Colas, F., Lagarde, F., & Gucciardi, P. G. (2019). Raman tweezers for small microplastics and nanoplastics identification in seawater. Environmental Science & Technology, 53(15), 9003–9013. https://doi.org/10.1021/acs.est.9b03105
  • Hahladakis, J. N., Velis, C. A., Weber, R., Iacovidou, E., & Purnell, P. (2018). An overview of chemical additives present in plastics: Migration, release, fate and environmental impact during their use, disposal and recycling. Journal of Hazardous Materials, 344, 179–199. https://doi.org/10.1016/j.jhazmat.2017.10.014
  • Hamidian, A. H., Ozumchelouei, E. J., Feizi, F., Wu, C. X., Zhang, Y., & Yang, M. (2021). A review on the characteristics of microplastics in wastewater treatment plants: A source for toxic chemicals. Journal of Cleaner Production, 295, 126480. https://doi.org/10.1016/j.jclepro.2021.126480
  • He, J. H., Han, L. F., Wang, F. Y., Ma, C. X., Cai, Y. P., Ma, W. W., … Yang, Z. F. (2022). Photocatalytic strategy to mitigate microplastic pollution in aquatic environments: Promising catalysts, efficiencies, mechanisms, and ecological risks. Crit Rev Environ Sci Technol, 53(4), 504–526.
  • He, C. S., He, P. P., Yang, H. Y., Li, L. L., Lin, Y., Mu, Y., & Yu, H. Q. (2017). Impact of zero-valent iron nanoparticles on the activity of anaerobic granular sludge: From macroscopic to microcosmic investigation. Water Research, 127, 32–40. https://doi.org/10.1016/j.watres.2017.09.061
  • He, Y. J., Li, L., Song, K., Liu, Q., Li, Z. Y., Xie, F. Z., & Zhao, X. L. (2021). Effect of microplastic particle size to the nutrients removal in activated sludge system. Marine Pollution Bulletin, 163(3), 111972. https://doi.org/10.1016/j.marpolbul.2021.111972
  • Hong, X. T., Niu, B. X., Sun, H. W., & Zhou, X. (2023). Insight into response characteristics and inhibition mechanisms of anammox granular sludge to polyethylene terephthalate microplastics exposure. Bioresource Technology, 385, 129355. https://doi.org/10.1016/j.biortech.2023.129355
  • Hou, H., Wang, S. L., Ji, B., Zhang, Y., Pi, K. W., & Shi, Y. F. (2022). Adaptation responses of microalgal-bacterial granular sludge to polystyrene microplastic particles in municipal wastewater. Environmental Science and Pollution Research International, 29(40), 59965–59973. https://doi.org/10.1007/s11356-022-20107-2
  • Hou, G. Q., Zhao, X. L., Zhao, T. H., Wu, X. W., Pu, S. Y., Tang, Z., & Wu, F. C. (2023). The adsorption of PAHs on microplastics and desorption in the simulated human digestive system. Chemical Engineering Journal and the Biochemical Engineering Journal473, 145157.
  • Huang, S. C., Zhang, B., Liu, Y., Feng, X. L., & Shi, W. X. (2022). Revealing the influencing mechanisms of polystyrene microplastics (MPs) on the performance and stability of the algal-bacterial granular sludge. Bioresource Technology, 354, 127202. https://doi.org/10.1016/j.biortech.2022.127202
  • Huang, S., Zhang, B., Zhao, Z., Yang, C., Zhang, B., Cui, F., Lens, P. N. L., & Shi, W. (2023). Metagenomic analysis reveals the responses of microbial communities and nitrogen metabolic pathways to polystyrene micro(nano)plastics in activated sludge systems. Water Research, 241, 120161. https://doi.org/10.1016/j.watres.2023.120161
  • Jachimowicz, P., Jo, Y. J., & Cydzik-Kwiatkowska, A. (2022). Polyethylene microplastics increase extracellular polymeric substances production in aerobic granular sludge. The Science of the Total Environment, 851(Pt 1), 158208. https://doi.org/10.1016/j.scitotenv.2022.158208
  • Jambeck, J. R., Geyer, R., Wilcox, C., Siegler, T. R., Perryman, M., Andrady, A., Narayan, R., & Law, K. L. (2015). Plastic waste inputs from land into the ocean. Science (New York, N.Y.), 347(6223), 768–771. https://doi.org/10.1126/science.1260352
  • Jensen, P. D., Astals, S., Lu, Y., Devadas, M., & Batstone, D. J. (2014). Anaerobic codigestion of sewage sludge and glycerol, focusing on process kinetics, microbial dynamics and sludge dewaterability. Water Research, 67, 355–366. https://doi.org/10.1016/j.watres.2014.09.024
  • Ji, J., Peng, L., Gao, T., Salama, E.-S., Khan, A., Liu, P., Yun, H., & Li, X. (2023). Microplastics enhanced the toxic effects of sulfamethoxazole on aerobic granular sludge and enriched antibiotic resistance genes. Chemical Engineering Journal and the Biochemical Engineering Journal. 464, 142783. https://doi.org/10.1016/j.cej.2023.142783
  • Junaid, M., Liu, S. L., Liao, H. P., Liu, X. Y., Wu, Y., & Wang, J. (2022). Wastewater plastisphere enhances antibiotic resistant elements, bacterial pathogens, and toxicological impacts in the environment. The Science of the Total Environment, 841, 156805. https://doi.org/10.1016/j.scitotenv.2022.156805
  • Junaid, M., & Wang, J. (2021). Interaction of nanoplastics with extracellular polymeric substances (EPS) in the aquatic environment: A special reference to eco-corona formation and associated impacts. Water Research, 201, 117319. https://doi.org/10.1016/j.watres.2021.117319
  • Liebgott, C., Chaib, I., Doyen, P., Robert, H., Eutamene, H., Duflos, G., Reynaud, S., Grassl, B., & Mercier-Bonin, M. (2023). Fate and impact of nanoplastics in the human digestive environment after oral exposure: A common challenge for toxicology and chemistry. TrAC Trends in Analytical Chemistry, 166, 117175. https://doi.org/10.1016/j.trac.2023.117175
  • Li, D., Guo, W., Liang, D., Zhang, J., Li, J., Li, P., Wu, Y., Bian, X., & Ding, F. (2022b). Rapid start-up and advanced nutrient removal of simultaneous nitrification, endogenous denitrification and phosphorus removal aerobic granular sequence batch reactor for treating low C/N domestic wastewater. Environmental Research, 212(Pt D), 113464. https://doi.org/10.1016/j.envres.2022.113464
  • Li, L., Li, Z. Y., Liu, D., & Song, K. (2020c). Evaluation of partial nitrification efficiency as a response to cadmium concentration and microplastic polyvinylchloride abundance during landfill leachate treatment. Chemosphere, 247, 125903. https://doi.org/10.1016/j.chemosphere.2020.125903
  • Li, L., Liu, D., Li, Z. Y., Song, K., & He, Y. J. (2020b). Evaluation of microplastic polyvinylchloride and antibiotics tetracycline co-effect on the partial nitrification process. Marine Pollution Bulletin, 160(1), 111671. https://doi.org/10.1016/j.marpolbul.2020.111671
  • Li, L., Luo, Y., Li, R., Zhou, Q., Peijnenburg, W. J. G. M., Yin, N., Yang, J., Tu, C., & Zhang, Y. (2020e). Effective uptake of submicrometre plastics by crop plants via a crack-entry mode. Nature Sustainability, 3(11), 929–937. https://doi.org/10.1038/s41893-020-0567-9
  • Lin, X., Su, C., Deng, X., Wu, S., Tang, L., Li, X., Liu, J., & Huang, X. (2020). Influence of polyether sulfone microplastics and bisphenol A on anaerobic granular sludge: Performance evaluation and microbial community characterization. Ecotoxicology and Environmental Safety, 205, 111318. https://doi.org/10.1016/j.ecoenv.2020.111318
  • Li, L., Song, K., Yeerken, S., Geng, S., Liu, D., Dai, Z., Xie, F., Zhou, X., & Wang, Q. (2020a). Effect evaluation of microplastics on activated sludge nitrification and denitrification. The Science of the Total Environment, 707, 135953. https://doi.org/10.1016/j.scitotenv.2019.135953
  • Li, Q. H., Tian, L., Cai, X. C., Wang, Y. C., & Mao, Y. P. (2022a). Plastisphere showing unique microbiome and resistome different from activated sludge. The Science of the Total Environment, 851(Pt 2), 158330. https://doi.org/10.1016/j.scitotenv.2022.158330
  • Liu, Q., Li, L., Zhao, X. L., & Song, K. (2021b). An evaluation of the effects of nanoplastics on the removal of activated-sludge nutrients and production of short chain fatty acid. Process Safety and Environment Protection. 148, 1070–1076. https://doi.org/10.1016/j.psep.2021.02.029
  • Liu, S., Su, C., Lu, Y., Xian, Y., Chen, Z., Wang, Y., Deng, X., & Li, X. (2023). Effects of microplastics on the properties of different types of sewage sludge and strategies to overcome the inhibition: A review. The Science of the Total Environment, 902, 166033. https://doi.org/10.1016/j.scitotenv.2023.166033
  • Liu, J. Y., Ya, T., Zhang, M. L., Zhu, M. H., Zhang, T. T., & Wang, X. H. (2022). Responses of microbial interactions to polyvinyl chloride microplastics in anammox system. Journal of Hazardous Materials. 440, 129807. https://doi.org/10.1016/j.jhazmat.2022.129807
  • Liu, W., Zhang, J., Liu, H., Guo, X., Zhang, X., Yao, X., Cao, Z., & Zhang, T. (2021a). A review of the removal of microplastics in global wastewater treatment plants: Characteristics and mechanisms. Environment International, 146, 106277. https://doi.org/10.1016/j.envint.2020.106277
  • Liu, H., Zhou, X., Ding, W. Q., Zhang, Z. H., L, D. M., Sun, J., & Wang, Q. L. (2019). Do microplastics affect biological wastewater treatment performance? Implications from bacterial activity experiments. ACS Sustainable Chemistry & Engineering, 7(24), 20097–20101.), https://doi.org/10.1021/acssuschemeng.9b05960
  • Li, H., Xu, S., Wang, S., Yang, J., Yan, P., Chen, Y., Guo, J., & Fang, F. (2020d). New insight into the effect of short-term exposure to polystyrene nanoparticles on activated sludge performance. Journal of Water Process Engineering. 38, 101559. https://doi.org/10.1016/j.jwpe.2020.101559
  • Lu, H., Diaz, D. J., Czarnecki, N. J., Zhu, C., Kim, W., Shroff, R., Acosta, D. J., Alexander, B. R., Cole, H. O., Zhang, Y., Lynd, N. A., Ellington, A. D., & Alper, H. S. (2022). Machine learning-aided engineering of hydrolases for PET depolymerization. Nature, 604(7907), 662–667. https://doi.org/10.1038/s41586-022-04599-z
  • Luo, Y. M., Li, L. Z., Feng, Y. D., Li, R. J., Yang, J., Peijnenburg, W. J. G. M., & Tu, C. (2022). Quantitative tracing of uptake and transport of submicrometre plastics in crop plants using lanthanide chelates as a dual-functional tracer. Nature Nanotechnology, 17(4), 424–431. https://doi.org/10.1038/s41565-021-01063-3
  • Mahon, A. M., O’Connell, B., Healy, M. G., O’Connor, I., Officer, R., Nash, R., & Morrison, L. (2017). Microplastics in sewage sludge: Effects of treatment. Environmental Science & Technology, 51(2), 810–818. https://doi.org/10.1021/acs.est.6b04048
  • Mcswain, B. S., Irvine, R. L., Hausner, M., & Wilderer, P. A. (2005). Composition and distribution of extracellular polymeric substances in aerobic flocs and granular sludge. Applied and Environmental Microbiology, 71(2), 1051–1057. https://doi.org/10.1128/AEM.71.2.1051-1057.2005
  • Mikkelsen, L. H., & Keiding, K. (2002). Physico-chemical characteristics of full scale sewage sludges with implications to dewatering. Water Research, 36(10), 2451–2462. https://doi.org/10.1016/s0043-1354(01)00477-8
  • Mirka, L., Mohamed Chaker, C. N., Markus, S., & Mika, S. (2018). Occurrence, identification and removal of microplastic particles and fibers in conventional activated sludge process and advanced MBR technology. Water Research. 133, 236–246.
  • Montano, L., Giorgini, E., Notarstefano, V., Notari, T., Ricciardi, M., Piscopo, M., & Motta, O. (2023). Raman Microspectroscopy evidence of microplastics in human semen. The Science of the Total Environment, 901, 165922. https://doi.org/10.1016/j.scitotenv.2023.165922
  • Morgan, J. W., Forster, C. F., & Evison, L. (1990). A comparative study of the nature of biopolymers extracted from anaerobic and activated sludges. Water Research. 24(6), 743–750. https://doi.org/10.1016/0043-1354(90)90030-A
  • Mu, H., Zheng, X., Chen, Y. G., Chen, H., & Liu, K. (2012). Response of anaerobic granular sludge to a shock load of zinc oxide nanoparticles during biological wastewater treatment. Environmental Science & Technology, 46(11), 5997–6003. https://doi.org/10.1021/es300616a
  • Murphy, F., Ewins, C., Carbonnier, F., & Quinn, B. (2016). Wastewater treatment works (WwTW) as a source of microplastics in the aquatic environment. Environmental Science & Technology, 50(11), 5800–5808. https://doi.org/10.1021/acs.est.5b05416
  • Nizzetto, L., Langaas, S., & Futter, M. (2016). Pollution: Do microplastics spill on to farm soils? Nature, 537(7621), 488–488. https://doi.org/10.1038/537488b
  • Parashar, N., & Hait, S. (2023). Recent advances on microplastics pollution and removal from wastewater systems: A critical review. Journal of Environmental Management, 340, 118014. https://doi.org/10.1016/j.jenvman.2023.118014
  • Qian, J., He, X., Wang, P., Xu, B., Li, K., Lu, B., Jin, W., & Tang, S. (2021). Effects of polystyrene nanoplastics on extracellular polymeric substance composition of activated sludge: The role of surface functional groups. Environmental Pollution (Barking, Essex: 1987), 279, 116904. https://doi.org/10.1016/j.envpol.2021.116904
  • Qin, R., Lin, X., Chen, Z., Su, C., Zhu, F., Yang, W., Chen, Z., & Lu, P. (2021). Evaluation of characteristics and microbial community of anaerobic granular sludge under microplastics and aromatic carboxylic acids exposure. The Science of the Total Environment, 792, 148361. https://doi.org/10.1016/j.scitotenv.2021.148361
  • Qin, R., Su, C., Liu, W., Tang, L., Li, X., Deng, X., Wang, A., & Chen, Z. (2020). Effects of exposure to polyether sulfone microplastic on the nitrifying process and microbial community structure in aerobic granular sludge. Bioresource Technology, 302, 122827. https://doi.org/10.1016/j.biortech.2020.122827
  • Qu, J., Li, H., Xu, S., Huang, J., Liu, Z., Long, M., Guo, J., & Fang, F. (2023). Acute exposure to polystyrene nanoplastics inhibits the flocculation of activated sludge. Journal of Environmental Chemical Engineering, 11(3), 109794. https://doi.org/10.1016/j.jece.2023.109794
  • Rochman, C. M. (2018). Microplastics research—from sink to source. Science (New York, N.Y.), 360(6384), 28–29. https://doi.org/10.1126/science.aar7734
  • Seeley, M. E., Song, B., Passie, R., & Hale, R. C. (2020). Microplastics affect sedimentary microbial communities and nitrogen cycling. Nature Communications, 11(1), 2372. https://doi.org/10.1038/s41467-020-16235-3
  • Seviour, T., Yuan, Z., Loosdrecht, M. C. M., & Lin, Y. (2012). Aerobic sludge granulation: A tale of two polysaccharides? Water Research, 46(15), 4803–4813. https://doi.org/10.1016/j.watres.2012.06.018
  • Sheng, G. P., Yu, H. Q., & Li, X. Y. (2010). Extracellular polymeric substances (EPS) of microbial aggregates in biological wastewater treatment systems: A review. Biotechnology Advances, 28(6), 882–894. https://doi.org/10.1016/j.biotechadv.2010.08.001
  • Song, X., Sun, S., Gao, Y., Zhang, W., Zhou, L., B, J. C., Wan, J., Chen, J., Zhou, L., & Yu, G. (2022). Laboratory-scale study of a biodegradable microplastic polylactic acid stabilizing aerobic granular sludge system. Environmental Pollution (Barking, Essex: 1987), 306, 119329. https://doi.org/10.1016/j.envpol.2022.119329
  • Steve, A. C., Jin, L., & Arnold, G. T. (2016). Transport and fate of microplastic particles in wastewater treatment plants. Water Research. 91, 174–182.
  • Su, Y., Chen, Y., Zheng, X., Wan, R., Huang, H., Li, M., & Wu, L. (2016). Using sludge fermentation liquid to reduce the inhibitory effect of copper oxide nanoparticles on municipal wastewater biological nutrient removal. Water Research, 99, 216–224. https://doi.org/10.1016/j.watres.2016.04.066
  • Sun, J., Dai, X. H., Wang, Q. L., van Loosdrecht, M. C. M., & Ni, B. J. (2019). Microplastics in wastewater treatment plants: Detection, occurrence and removal. Water Research, 152, 21–37. https://doi.org/10.1016/j.watres.2018.12.050
  • Sun, X.-D., Yuan, X.-Z., Jia, Y., Feng, L.-J., Zhu, F.-P., Dong, S.-S., Liu, J., Kong, X., Tian, H., Duan, J.-L., Ding, Z., Wang, S.-G., & Xing, B. (2020). Differentially charged nanoplastics demonstrate distinct accumulation in Arabidopsis thaliana. Nature Nanotechnology, 15(9), 755–760. https://doi.org/10.1038/s41565-020-0707-4
  • Tang, S. J., Qian, J., Wang, P. F., Lu, B. H., He, Y. X., Yi, Z. Y., & Zhang, Y. H. (2022c). Exposure to nanoplastic induces cell damage and nitrogen inhibition of activated sludge: Evidence from bacterial individuals and groups. Environmental Pollution (Barking, Essex: 1987), 306, 119471. https://doi.org/10.1016/j.envpol.2022.119471
  • Tang, L., Su, C., Chen, Y., Xian, Y., Hui, X., Ye, Z., Chen, M., Zhu, F., & Zhong, H. (2020). Influence of biodegradable polybutylene succinate and non-biodegradable polyvinyl chloride microplastics on anammox sludge: Performance evaluation, suppression effect and metagenomic analysis. Journal of Hazardous Materials, 401, 123337. https://doi.org/10.1016/j.jhazmat.2020.123337
  • Tang, Q., Wu, M., Zhang, Y., Li, J., Liang, J., Zhou, H., Qu, Y., & Zhang, X. (2022a). Performance and bacterial community profiles of sequencing batch reactors during long-term exposure to polyethylene terephthalate and polyethylene microplastics. Bioresource Technology, 347, 126393. https://doi.org/10.1016/j.biortech.2021.126393
  • Tang, M., Zhou, S. N., Huang, J. M., Sun, L. P., & Lu, H. (2022b). Stress responses of sulfate-reducing bacteria sludge upon exposure to polyethylene microplastics. Water Research, 220, 118646. https://doi.org/10.1016/j.watres.2022.118646
  • Thompson, R. C., Olsen, Y., Mitchell, R. P., Davis, A., Rowland, S. J., John, A. W. G., McGonigle, D., & Russell, A. E. (2004). Lost at Sea: Where Is All the Plastic? Science (New York, N.Y.), 304(5672), 838–838. https://doi.org/10.1126/science.1094559
  • Tiwari, N., Bansal, M., Santhiya, D., & Sharma, J. G. (2022). Insights into microbial diversity on plastisphere by multi-omics. Archives of Microbiology, 204(4), 216. https://doi.org/10.1007/s00203-022-02806-z
  • Tournier, V., Topham, C. M., Gilles, A., David, B., Folgoas, C., Moya-Leclair, E., Kamionka, E., Desrousseaux, M.-L., Texier, H., Gavalda, S., Cot, M., Guémard, E., Dalibey, M., Nomme, J., Cioci, G., Barbe, S., Chateau, M., André, I., Duquesne, S., & Marty, A. (2020). An engineered PET depolymerase to break down and recycle plastic bottles. Nature, 580(7802), 216–219. https://doi.org/10.1038/s41586-020-2149-4
  • Wang, Z. Q., Gao, J. F., Dai, H. H., Zhao, Y. F., Li, D. C., Duan, W. J., & Guo, Y. (2020a). Microplastics affect the ammonia oxidation performance of aerobic granular sludge and enrich the intracellular and extracellular antibiotic resistance genes. Journal of Hazardous Materials, 409, 124981. https://doi.org/10.1016/j.jhazmat.2020.124981
  • Wang, Z. Q., Gao, J. F., Li, D. C., Dai, H. H., & Zhao, Y. F. (2020b). Co-occurrence of microplastics and triclosan inhibited nitrification function and enriched antibiotic resistance genes in nitrifying sludge. Journal of Hazardous Materials, 399, 123049. https://doi.org/10.1016/j.jhazmat.2020.123049
  • Wang, Z. Q., Gao, J. F., Zhao, Y. F., Cui, Y. C., Zhang, Y., Dai, H. H., & Li, D. C. (2022b). Discrepant responses of polyvinyl chloride microplastics biofilms and activated sludge under sulfadiazine stress in an anaerobic/anoxic/oxic system. Chemical Engineering Journal and the Biochemical Engineering Journal. 446(P1), 137055. https://doi.org/10.1016/j.cej.2022.137055
  • Wang, Y., Huang, D.-Q., Yang, J.-H., Li, G.-F., Zhou, Y.-X., Zhang, J.-Y., Lu, Y., Fan, N.-S., & Jin, R.-C. (2023a). Polyamide microplastics act as carriers for cephalexin in the anammox process. Chemical Engineering Journal and the Biochemical Engineering Journal. 451, 138685. https://doi.org/10.1016/j.cej.2022.138685
  • Wang, Y. X., Liu, X. H., Liu, R. Y., Han, W. P., & Yang, Q. (2023c). Mechanisms of interaction between polystyrene nanoplastics and extracellular polymeric substances in the activated sludge cultivated by different carbon sources. Chemosphere, 314, 137656. https://doi.org/10.1016/j.chemosphere.2022.137656
  • Wang, X. Q., Lyu, T., Dong, R. J., Liu, H. T., & Wu, S. B. (2021b). Dynamic evolution of humic acids during anaerobic digestion: Exploring an effective auxiliary agent for heavy metal remediation. Bioresource Technology, 320(Pt A), 124331. https://doi.org/10.1016/j.biortech.2020.124331
  • Wang, H., Qiu, C., Bian, S. C., Zheng, L., Chen, Y. M., Song, Y. L., & Fang, C. R. (2023b). The effects of microplastics and nanoplastics on nitrogen removal, extracellular polymeric substances and microbial community in sequencing batch reactor. Bioresource Technology, 379, 129001. https://doi.org/10.1016/j.biortech.2023.129001
  • Wang, Z. F., Su, Y. L., Zhu, J. D., Wu, D., & Xie, B. (2022c). Size-dependent effects of microplastics on antibiotic resistance genes fate in wastewater treatment systems: The role of changed surface property and microbial assemblages in a continuous exposure mode. The Science of the Total Environment, 851(Pt 2), 158264. https://doi.org/10.1016/j.scitotenv.2022.158264
  • Wang, C., Wei, W., Zhang, Y. T., Dai, X. H., & Ni, B. J. (2022a). Different sizes of polystyrene microplastics induced distinct microbial responses of anaerobic granular sludge. Water Research, 220, 118607. https://doi.org/10.1016/j.watres.2022.118607
  • Wang, C., Wei, W., Zhang, Y. T., & Ni, B. J. (2022d). Evaluating the role of biochar in mitigating the inhibition of polyethylene nanoplastics on anaerobic granular sludge. Water Research, 221, 118855. https://doi.org/10.1016/j.watres.2022.118855
  • Wang, Q., Zhao, Y., Zhai, S., Liu, D., Zhou, X., Wang, Y., Cabrera, J., & Ji, M. (2021a). Application of different redox mediators induced bio-promoters to accelerate the recovery of denitrification and denitrifying functional microorganisms inhibited by transient Cr(VI) shock. Journal of Hazardous Materials, 420, 126664. https://doi.org/10.1016/j.jhazmat.2021.126664
  • Wei, W., Hao, Q., Chen, Z. J., Bao, T., & Ni, B. J. (2020). Polystyrene nanoplastics reshape the anaerobic granular sludge for recovering methane from wastewater. Water Research, 182, 116041. https://doi.org/10.1016/j.watres.2020.116041
  • Wei, W., Huang, Q. S., Sun, J., Dai, X. H., & Ni, B. J. (2019c). Revealing the Mechanisms of Polyethylene Microplastics Affecting Anaerobic Digestion of Waste Activated Sludge. Environmental Science & Technology, 53(16), 9604–9613. https://doi.org/10.1021/acs.est.9b02971
  • Wei, W., Huang, Q. S., Sun, J., Wang, J. Y., Wu, S. L., & Ni, B. J. (2019b). Polyvinyl Chloride Microplastics Affect Methane Production from the Anaerobic Digestion of Waste Activated Sludge through Leaching Toxic Bisphenol-A. Environmental Science & Technology, 53(5), 2509–2517. https://doi.org/10.1021/acs.est.8b07069
  • Wei, W., Wang, C., Shi, X. D., Zhang, Y. T., Chen, Z. J., Wu, L., & Ni, B. J. (2022b). Multiple microplastics induced stress on anaerobic granular sludge and an effectively overcoming strategy using hydrochar. Water Research, 222, 118895. https://doi.org/10.1016/j.watres.2022.118895
  • Wei, W., Zhang, Y. T., Huang, Q. S., & Ni, B. J. (2019a). Polyethylene terephthalate microplastics affect hydrogen production from alkaline anaerobic fermentation of waste activated sludge through altering viability and activity of anaerobic microorganisms. Water Research, 163, 114881. https://doi.org/10.1016/j.watres.2019.114881
  • Wei, W., Zhang, Y. T., Wang, C., Guo, W. S., Ngo, H. H., Chen, X. M., & Ni, B. J. (2022a). Responses of anaerobic hydrogen-producing granules to acute microplastics exposure during biological hydrogen production from wastewater. Water Research, 220, 118680. https://doi.org/10.1016/j.watres.2022.118680
  • Winkler, M. K. H., & van Loosdrecht, M. C. M. (2022). Intensifying existing urban wastewater Aerobic granular sludge offers improvements to treatment processes. Science (New York, N.Y.), 375(6579), 377–378. https://doi.org/10.1126/science.abm3900
  • Wu, P., Chen, J., Garlapati, V. K., Zhang, X., Wani Victor Jenario, F., Li, X., Liu, W., Chen, C., Aminabhavi, T. M., & Zhang, X. (2022b). Novel Insights into Anammox-based Processes: A Critical Review. Chemical Engineering Journal and the Biochemical Engineering Journal. 444, 136534. https://doi.org/10.1016/j.cej.2022.136534
  • Wu, X., Zhao, X., Chen, R., Liu, P., Liang, W., Wang, J., Teng, M., Wang, X., & Gao, S. (2022a). Wastewater treatment plants act as essential sources of microplastic formation in aquatic environments: A critical review. Water Research, 221, 118825. https://doi.org/10.1016/j.watres.2022.118825
  • Wu, T., Zhong, L., Ding, J., Pang, J.-W., Sun, H.-J., Ding, M.-Q., Ren, N.-Q., & Yang, S.-S. (2023). Microplastics perturb nitrogen removal, microbial community and metabolism mechanism in biofilm system. Journal of Hazardous Materials, 458, 131971. https://doi.org/10.1016/j.jhazmat.2023.131971
  • Xiong, W., Wang, S. J., Zhang, Q. H., Hou, Y. R., Jin, Y., Chen, B. Q., & Su, H. J. (2023). Synergistic analysis of performance, microbial community, and metabolism in aerobic granular sludge under polyacrylonitrile microplastics stress. Bioresource Technology, 385, 129394. https://doi.org/10.1016/j.biortech.2023.129394
  • Xu, S., Li, H., Wang, G., Liu, Z., Long, M., Guo, J., Yan, P., Chen, Y., & Fang, F. (2022b). Effects of long-term exposure to low-concentration PS-NPs on anammox granular sludge: Resistance and inhibition depend on PS-NP accumulation. Journal of Cleaner Production, 365, 132902. https://doi.org/10.1016/j.jclepro.2022.132902
  • Xu, A., Shi, M., Xing, X., Su, Y., Li, X., Liu, W., Mao, Y., Hu, T., & Qi, S. (2022a). Status and prospects of atmospheric microplastics: A review of methods, occurrence, composition, source and health risks. Environmental Pollution (Barking, Essex: 1987), 303, 119173. https://doi.org/10.1016/j.envpol.2022.119173
  • Xu, J. K., Wang, X. Y., Zhang, Z. A., Yan, Z. H., & Zhang, Y. (2021). Effects of chronic exposure to different sizes and polymers of microplastics on the characteristics of activated sludge. The Science of the Total Environment, 783, 146954. https://doi.org/10.1016/j.scitotenv.2021.146954
  • Yang, X., Liu, H., Xu, Y., Liu, L., Zhu, Y., Jiang, K., Zhang, Z., Chen, G., & Wang, Z. (2022b). Effects of urea formaldehyde resin on the characteristics and microbial community of anaerobic granular sludge. Journal of Environmental Chemical Engineering, 10(6), 108614. https://doi.org/10.1016/j.jece.2022.108614
  • Yang, H., Wang, Y., Wang, Z., Yuan, S., Niu, C., Liu, Y., Gao, Y., Li, Y., Su, D., & Song, Y. (2022a). Effect of polytetrafluoroethylene nanoplastics on combined inhibition of ciprofloxacin and bivalent copper on nitrogen removal, sludge activity and microbial community in sequencing batch reactor. Bioresource Technology, 360, 127627. https://doi.org/10.1016/j.biortech.2022.127627
  • Yazdanbakhsh, A., Rafiee, M., & Mohammadi, Z. (2023). Responses of activated sludge under a short-term exposure to facial scrub microbeads: Implications from treatment performance and higher-life microbial population dynamics. Water Science and Technology: A Journal of the International Association on Water Pollution Research, 87(12), 3031–3046. https://doi.org/10.2166/wst.2023.183
  • Yin, Z. Z., & Zhao, Y. (2023). Microplastics pollution in freshwater sediments: The pollution status assessment and sustainable management measures. Chemosphere, 314, 137727. https://doi.org/10.1016/j.chemosphere.2022.137727
  • Yoshida, S., Hiraga, K., Takehana, T., Taniguchi, I., Yamaji, H., Maeda, Y., Toyohara, K., Miyamoto, K., Kimura, Y., & Oda, K. (2016). A bacterium that degrades and assimilates poly(ethylene terephthalate). Science (New York, N.Y.), 351(6278), 1196–1199. https://doi.org/10.1126/science.aad6359
  • Zhang, Z., & Chen, Y. (2019). Effects of microplastics on wastewater and sewage sludge treatment and their removal: A review. Chemical Engineering Journal and the Biochemical Engineering Journal. 382, 122955. https://doi.org/10.1016/j.cej.2019.122955
  • Zhang, B., Huang, S. C., Wu, L., Guo, Y., Shi, W. X., & Lens Piet, N. L. (2023). Micro(nano)plastic size and concentration co-differentiate the treatment performance and toxicity mechanism in aerobic granular sludge systems. Chemical Engineering Journal and the Biochemical Engineering Journal. 457, 120161.
  • Zhang, Q., Lin, J. G., Kong, Z., & Zhang, Y. L. (2022a). A critical review of exogenous additives for improving the anammox process. The Science of the Total Environment, 833, 155074. https://doi.org/10.1016/j.scitotenv.2022.155074
  • Zhang, Y. T., Wei, W., Huang, Q. S., Wang, C., Wang, Y., & Ni, B. J. (2020b). Insights into the microbial response of anaerobic granular sludge during long-term exposure to polyethylene terephthalate microplastics. Water Research, 179, 115898. https://doi.org/10.1016/j.watres.2020.115898
  • Zhang, Y. T., Wei, W., Sun, J., Xu, Q. X., & Ni, B. J. (2020a). Long-Term Effects of Polyvinyl Chloride Microplastics on Anaerobic Granular Sludge for Recovering Methane from Wastewater. Environmental Science & Technology, 54(15), 9662–9671. https://doi.org/10.1021/acs.est.0c02433
  • Zhang, Y. T., Wei, W., Wang, C., & Ni, B. J. (2022b). Understanding and mitigating the distinctive stresses induced by diverse microplastics on anaerobic hydrogen-producing granular sludge. Journal of Hazardous Materials, 440, 129771. https://doi.org/10.1016/j.jhazmat.2022.129771
  • Zhang, Q., Zhang, X., Bai, Y.-H., Xia, W.-J., Ni, S.-K., Wu, Q.-Y., Fan, N.-S., Huang, B.-C., & Jin, R.-C. (2020c). Exogenous extracellular polymeric substances as protective agents for the preservation of anammox granules. The Science of the Total Environment, 747, 141464. https://doi.org/10.1016/j.scitotenv.2020.141464
  • Zhao, L., Su, C., Liu, W., Qin, R., Tang, L., Deng, X., Wu, S., & Chen, M. (2019). Exposure to polyamide 66 microplastic leads to effects performance and microbial community structure of aerobic granular sludge. Ecotoxicology and Environmental Safety, 190, 110070. https://doi.org/10.1016/j.ecoenv.2019.110070
  • Zheng, X., Han, Z., Shao, X., Zhao, Z., Zhang, H., Lin, T., Yang, S., & Zhou, C. (2022). Response of aerobic granular sludge under polyethylene microplastics stress: Physicochemical properties, decontamination performance, and microbial community. Journal of Environmental Management, 323, 116215. https://doi.org/10.1016/j.jenvman.2022.116215
  • Zhou, C. S., Wu, J. W., Ma, W. L., Liu, B. F., Xing, D. F., Yang, S. S., & Cao, G. L. (2022). Responses of nitrogen removal under microplastics versus nanoplastics stress in SBR: Toxicity, microbial community and functional genes. Journal of Hazardous Materials, 432, 128715. https://doi.org/10.1016/j.jhazmat.2022.128715
  • Zhou, X., Zhai, S. Y., Zhao, Y. X., Liu, D., Wang, Q., & Ji, M. (2021). Rapid recovery of inhibited denitrification with cascade Cr(VI) exposure by bio-accelerant: Characterization of chromium distributions, EPS compositions and denitrifying communities. Journal of Hazardous Materials, 411, 125087. https://doi.org/10.1016/j.jhazmat.2021.125087

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.