1,940
Views
0
CrossRef citations to date
0
Altmetric
Review Articles

Practical application of machine learning for organic matter and harmful algal blooms in freshwater systems: A review

, , &
Pages 953-975 | Published online: 29 Nov 2023

References

  • Almuhtaram, H., Zamyadi, A., & Hofmann, R. (2021). Machine learning for anomaly detection in cyanobacterial fluorescence signals. Water Research, 197, 117073. https://doi.org/10.1016/j.watres.2021.117073
  • Aptoula, E., & Ariman, S. (2022). Chlorophyll-a retrieval from Sentinel-2 images using convolutional neural network regression. IEEE Geoscience and Remote Sensing Letters, 19, 1–5. https://doi.org/10.1109/LGRS.2021.3070437
  • Astuti, A. D., Aris, A., Salim, M. R., Azman, S., & Said, M. I. M. (2020). Artificial intelligence approach to predicting river water quality: A review. Journal of Environmental Treatment Techniques, 8, 1093–1100.
  • Bhattacharjee, R., Gupta, A., Das, N., Agnihotri, A. K., Ohri, A., & Gaur, S. (2022). Analysis of algal bloom intensification in mid-Ganga river, India, using satellite data and neural network techniques. Environmental Monitoring and Assessment, 194(8), 547. https://doi.org/10.1007/s10661-022-10213-6
  • Biecek, P., & Burzykowski, T. (2021). Explanatory model analysis: Explore, explain, and examine predictive models. Chapman and Hall/CRC.
  • Bittar, T. B., Vieira, A. A. H., Stubbins, A., & Mopper, K. (2015). Competition between photochemical and biological degradation of dissolved organic matter from the cyanobacteria Microcystis aeruginosa. Limnology and Oceanography, 60(4), 1172–1194. https://doi.org/10.1002/lno.10090
  • Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5–32. https://doi.org/10.1023/A:1010933404324
  • Cao, Z., Ma, R., Duan, H., Pahlevan, N., Melack, J., Shen, M., & Xue, K. (2020). A machine learning approach to estimate Chlorophyll-a from Landsat-8 measurements in inland lakes. Remote Sensing of Environment, 248, 111974. https://doi.org/10.1016/j.rse.2020.111974
  • Cho, S., Lim, B., Jung, J., Kim, S., Chae, H., Park, J., Park, S., & Park, J. K. (2014). Factors affecting algal blooms in a man-made lake and prediction using an artificial neural network. Measurement: Journal of the International Measurement Confederation, 53, 224–233. https://doi.org/10.1016/j.measurement.2014.03.044
  • Chollet, F., & Allaire, J. J. (2018). Deep learning with R: Shelter Island. Manning Publications.
  • Chusnah, W. N., & Chu, H. J. (2022). Estimating Chlorophyll-a concentrations in tropical reservoirs from band-ratio machine learning models. Remote Sensing Applications: Society and Environment, 25, 100678. https://doi.org/10.1016/j.rsase.2021.100678
  • Cichos, F., Gustavsson, K., Mehlig, B., & Volpe, G. (2020). Machine learning for active matter. Nature Machine Intelligence, 2(2), 94–103. https://doi.org/10.1038/s42256-020-0146-9
  • Coad, P., Cathers, B., Ball, J. E., & Kadluczka, R. (2014). Proactive management of estuarine algal blooms using an automated monitoring buoy coupled with an artificial neural network. Environmental Modelling & Software, 61, 393–409. https://doi.org/10.1016/j.envsoft.2014.07.011
  • Cruz, R. C., Reis Costa, P., Vinga, S., Krippahl, L., & Lopes, M. B. (2021). A review of recent machine learning advances for forecasting harmful algal blooms and shellfish contamination. Journal of Marine Science and Engineering, 9(3), 283. https://doi.org/10.3390/jmse9030283
  • Cuss, C. W., McConnell, S. M., & Guéguen, C. (2016). Combining parallel factor analysis and machine learning for the classification of dissolved organic matter according to source using fluorescence signatures. Chemosphere, 155, 283–291. https://doi.org/10.1016/j.chemosphere.2016.04.061
  • Demir, I., Xiang, Z., Demiray, B., & Sit, M. (2022). WaterBench-Iowa: A large-scale benchmark dataset for data-driven streamflow forecasting. Earth System Science Data, 14(12), 5605–5616. https://doi.org/10.5194/essd-14-5605-2022
  • Deng, J., Shan, K., Shi, K., Qian, S., Zhang, Y., Qin, B., & Zhu, G. (2023). Nutrient reduction mitigated the expansion of cyanobacterial blooms caused by climate change in Lake Taihu according to Bayesian network models. Water Research, 236, 119946. https://doi.org/10.1016/j.watres.2023.119946
  • Derot, J., Yajima, H., & Jacquet, S. (2020). Advances in forecasting harmful algal blooms using machine learning models: A case study with Planktothrix rubescens in Lake Geneva. Harmful Algae, 99, 101906. https://doi.org/10.1016/j.hal.2020.101906
  • Domingos, P. (2012). A few useful things to know about machine learning. Communications of the ACM, 55(10), 78–87. https://doi.org/10.1145/2347736.2347755
  • Du, Y., An, S., He, H., Wen, S., Xing, P., & Duan, H. (2022). Production and transformation of organic matter driven by algal blooms in a shallow lake: Role of sediments. Water Research, 219, 118560. https://doi.org/10.1016/j.watres.2022.118560
  • Dubinsky, E. A., Butkus, S. R., & Andersen, G. L. (2016). Microbial source tracking in impaired watersheds using PhyloChip and machine-learning classification. Water Research, 105, 56–64. https://doi.org/10.1016/j.watres.2016.08.035
  • Dueben, P. D., Schultz, M. G., Chantry, M., Gagne, D. J., Hall, D. M., & McGovern, A. (2022). Challenges and benchmark datasets for machine learning in the atmospheric sciences: definition, status, and outlook. Artificial Intelligence for the Earth Systems, 1(3), e210002. https://doi.org/10.1175/AIES-D-21-0002.1
  • Fu, G., Jin, Y., Sun, S., Yuan, Z., & Butler, D. (2022). The role of deep learning in urban water management: A critical review. Water Research, 223, 118973. https://doi.org/10.1016/j.watres.2022.118973
  • García Nieto, P. J., García-Gonzalo, E., Alonso Fernández, J. R., & Díaz Muñiz, C. (2019). Water eutrophication assessment relied on various machine learning techniques: A case study in the Englishmen Lake (Northern Spain). Ecological Modelling, 404, 91–102. https://doi.org/10.1016/j.ecolmodel.2019.03.009
  • Gevrey, M., Dimopoulos, I., & Lek, S. (2003). Review and comparison of methods to study the contribution of variables in artificial neural network models. Ecological Modelling, 160(3), 249–264. https://doi.org/10.1016/S0304-3800(02)00257-0
  • Goz, E., Yuceer, M., & Karadurmus, E. (2019). Total organic carbon prediction with artificial intelligence techniques. Computer Aided Chemical Engineering, 46, 889–894.
  • Green, M. B., Pardo, L. H., Bailey, S. W., Campbell, J. L., McDowell, W. H., Bernhardt, E. S., & Rosi, E. J. (2021). Predicting high-frequency variation in stream solute concentrations with water quality sensors and machine learning. Hydrological Processes, 35(1), e14000. https://doi.org/10.1002/hyp.14000
  • Gupta, A., Hantush, M. M., & Govindaraju, R. S. (2023). Sub-monthly time scale forecasting of harmful algal blooms intensity in Lake Erie using remote sensing and machine learning. The Science of the Total Environment, 900, 165781. https://doi.org/10.1016/j.scitotenv.2023.165781
  • Haggerty, R., Sun, J., Yu, H., & Li, Y. (2023). Application of machine learning in groundwater quality modeling - A comprehensive review. Water Research, 233, 119745. https://doi.org/10.1016/j.watres.2023.119745
  • Hair, J., Hult, G. T. M., Ringle, C., & Sarstedt, M. (2022). A primer on partial least squares structural equation modeling (PLS-SEM). SAGE.
  • Hastie, T., Tibshirani, R., & Friedman, J. H. (2009). The elements of statistical learning: Data mining, inference, and prediction. Springer.
  • Heddam, S. (2014). Generalized regression neural network (GRNN)-based approach for colored dissolved organic matter (CDOM) retrieval: Case study of Connecticut River at Middle Haddam Station, USA. Environmental Monitoring and Assessment, 186(11), 7837–7848. https://doi.org/10.1007/s10661-014-3971-7
  • Heddam, S. (2016). Multilayer perceptron neural network-based approach for modeling phycocyanin pigment concentrations: Case study from lower Charles River buoy, USA. Environmental Science and Pollution Research International, 23(17), 17210–17225. https://doi.org/10.1007/s11356-016-6905-9
  • Herzsprung, P., Wentzky, V., Kamjunke, N., Von Tümpling, W., Wilske, C., Friese, K., Boehrer, B., Reemtsma, T., Rinke, K., & Lechtenfeld, O. J. (2020). Improved understanding of dissolved organic matter processing in freshwater using complementary experimental and machine learning approaches. Environmental Science & Technology, 54(21), 13556–13565. https://doi.org/10.1021/acs.est.0c02383
  • Ho, J. C., Stumpf, R. P., Bridgeman, T. B., & Michalak, A. M. (2017). Using Landsat to extend the historical record of lacustrine phytoplankton blooms: A Lake Erie case study. Remote Sensing of Environment, 191, 273–285. https://doi.org/10.1016/j.rse.2016.12.013
  • Hong, S. M., Cho, K. H., Park, S., Kang, T., Kim, M. S., Nam, G., & Pyo, J. (2022). Estimation of cyanobacteria pigments in the main rivers of South Korea using spatial attention convolutional neural network with hyperspectral imagery. GI Science and Remote Sensing, 59(1), 547–567. https://doi.org/10.1080/15481603.2022.2037887
  • Hou, G., Li, H., Recknagel, F., & Song, L. (2006). Modeling phytoplankton dynamics in the river darling (Australia) using the radial basis function neural network. Journal of Freshwater Ecology, 21(4), 639–647. https://doi.org/10.1080/02705060.2006.9664125
  • Huang, J., & Gao, J. (2017). An ensemble simulation approach for artificial neural network: An example from Chlorophyll a simulation in Lake Poyang, China. Ecological Informatics, 37, 52–58. https://doi.org/10.1016/j.ecoinf.2016.11.012
  • Huang, J., Gao, J., & Zhang, Y. (2015). Combination of artificial neural network and clustering techniques for predicting phytoplankton biomass of Lake Poyang, China. Limnology, 16(3), 179–191. https://doi.org/10.1007/s10201-015-0454-7
  • Huang, R., Ma, C., Ma, J., Huangfu, X., & He, Q. (2021). Machine learning in natural and engineered water systems. Water Research, 205, 117666. https://doi.org/10.1016/j.watres.2021.117666
  • James, G., Witten, D., Hastie, T., & Tibshirani, R. (2017). An introduction to statistical learning: With applications in R. Springer New York.
  • Jeong, B., Chapeta, M. R., Kim, M., Kim, J., Shin, J., & Cha, Y. K. (2022). Machine learning-based prediction of harmful algal blooms in water supply reservoirs. Water Quality Research Journal, 57(4), 304–318. https://doi.org/10.2166/wqrj.2022.019
  • Jeong, K. S., Kim, D. K., & Joo, G. J. (2006). River phytoplankton prediction model by Artificial Neural Network: Model performance and selection of input variables to predict time-series phytoplankton proliferations in a regulated river system. Ecological Informatics, 1(3), 235–245. https://doi.org/10.1016/j.ecoinf.2006.04.001
  • Jones, T. D., Chappell, N. A., & Tych, W. (2014). First dynamic model of dissolved organic carbon derived directly from high-frequency observations through contiguous storms. Environmental Science & Technology, 48(22), 13289–13297. https://doi.org/10.1021/es503506m
  • Kalin, L., Isik, S., Schoonover, J. E., & Lockaby, B. G. (2010). Predicting water quality in unmonitored watersheds using artificial neural networks. Journal of Environmental Quality, 39(4), 1429–1440. https://doi.org/10.2134/jeq2009.0441
  • Keller, S., Maier, P. M., Riese, F. M., Norra, S., Holbach, A., Börsig, N., Wilhelms, A., Moldaenke, C., Zaake, A., & Hinz, S. (2018). Hyperspectral data and machine learning for estimating CDOM, Chlorophyll a, diatoms, green algae and turbidity. International Journal of Environmental Research and Public Health, 15(9), 1881. https://doi.org/10.3390/ijerph15091881
  • Khatami, R., Mountrakis, G., & Stehman, S. (2016). A meta-analysis of remote sensing research on supervised pixel-based land-cover image classification processes: General guidelines for practitioners and future research. Remote Sensing of Environment, 177, 89–100. https://doi.org/10.1016/j.rse.2016.02.028
  • Kim, K. M., & Ahn, J. H. (2022). Machine learning predictions of Chlorophyll-a in the Han river basin, Korea. Journal of Environmental Management, 318, 115636. https://doi.org/10.1016/j.jenvman.2022.115636
  • Kim, H. G., Hong, S., Jeong, K. S., Kim, D. K., & Joo, G. J. (2019). Determination of sensitive variables regardless of hydrological alteration in artificial neural network model of Chlorophyll a: Case study of Nakdong River. Ecological Modelling, 398, 67–76. https://doi.org/10.1016/j.ecolmodel.2019.02.003
  • Kim, D. K., Jeong, K. S., McKay, R. I. B., Chon, T. S., & Joo, G. J. (2012). Machine learning for predictive management: Short and long term prediction of phytoplankton biomass using genetic algorithm based recurrent neural networks. International Journal of Environmental Research, 6, 96–108.
  • Kim, S., Maleki, N., Rezaie-Balf, M., Singh, V. P., Alizamir, M., Kim, N. W., Lee, J.-T., & Kisi, O. (2021b). Assessment of the total organic carbon employing the different nature-inspired approaches in the Nakdong River, South Korea. Environmental Monitoring and Assessment, 193(7), 445. https://doi.org/10.1007/s10661-021-08907-4
  • Kim, T., Shin, J., Lee, D., Kim, Y., Na, E., Park, J. H., Lim, C., & Cha, Y. (2022). Simultaneous feature engineering and interpretation: Forecasting harmful algal blooms using a deep learning approach. Water Research, 215, 118289. https://doi.org/10.1016/j.watres.2022.118289
  • Kim, J. H., Shin, J. K., Lee, H., Lee, D. H., Kang, J. H., Cho, K. H., Lee, Y. G., Chon, K., Baek, S. S., & Park, Y. (2021a). Improving the performance of machine learning models for early warning of harmful algal blooms using an adaptive synthetic sampling method. Water Research, 207, 117821. https://doi.org/10.1016/j.watres.2021.117821
  • Kok, Z. H., Mohamed Shariff, A. R., Alfatni, M. S. M., & Khairunniza-Bejo, S. (2021). Support vector machine in precision agriculture: A review. Computers and Electronics in Agriculture, 191, 106546. https://doi.org/10.1016/j.compag.2021.106546
  • Korak, J. A., Wert, E. C., & Rosario-Ortiz, F. L. (2015). Evaluating fluorescence spectroscopy as a tool to characterize cyanobacteria intracellular organic matter upon simulated release and oxidation in natural water. Water Research, 68, 432–443. https://doi.org/10.1016/j.watres.2014.09.046
  • Lee, D., Kim, M., Lee, B., Chae, S., Kwon, S., & Kang, S. (2022). Integrated explainable deep learning prediction of harmful algal blooms. Technological Forecasting and Social Change, 185, 122046. https://doi.org/10.1016/j.techfore.2022.122046
  • Leloup, M., Nicolau, R., Pallier, V., Yéprémian, C., & Feuillade-Cathalifaud, G. (2013). Organic matter produced by algae and cyanobacteria: Quantitative and qualitative characterization. Journal of Environmental Sciences (China), 25(6), 1089–1097. https://doi.org/10.1016/s1001-0742(12)60208-3
  • Lewis, C. D. (1982). Industrial and business forecasting methods: A practical guide to exponential smoothing and curve fitting. Butterworth Scientific.
  • Li, S., Song, K., Wang, S., Liu, G., Wen, Z., Shang, Y., Lyu, L., Chen, F., Xu, S., Tao, H., Du, Y., Fang, C., & Mu, G. (2021). Quantification of Chlorophyll-a in typical lakes across China using Sentinel-2 MSI imagery with machine learning algorithm. The Science of the Total Environment, 778, 146271. https://doi.org/10.1016/j.scitotenv.2021.146271
  • Liao, Z., Lu, J., Xie, K., Wang, Y., & Yuan, Y. (2023). Prediction of photochemical properties of dissolved organic matter using machine learning. Environmental Science & Technology, 57, 17971–17980. https://doi.org/10.1021/acs.est.2c07545
  • Liu, M., He, J., Huang, Y., Tang, T., Hu, J., & Xiao, X. (2022a). Algal bloom forecasting with time-frequency analysis: A hybrid deep learning approach. Water Research, 219, 118591. https://doi.org/10.1016/j.watres.2022.118591
  • Liu, W.-X., He, W., Wu, J.-Y., Wu, W.-J., & Xu, F.-L. (2019). Effects of fluorescent dissolved organic matters (FDOMs) on perfluoroalkyl acids (PFAAs) in lake and river water. The Science of the Total Environment, 666, 598–607. https://doi.org/10.1016/j.scitotenv.2019.02.219
  • Liu, X., Lu, D., Zhang, A., Liu, Q., & Jiang, G. (2022b). Data-driven machine learning in environmental pollution: gains and problems. Environmental Science & Technology, 56(4), 2124–2133. https://doi.org/10.1021/acs.est.1c06157
  • Liu, F., & Wang, D. (2022). Dissolved organic carbon concentration and biodegradability across the global rivers: A meta-analysis. The Science of the Total Environment, 818, 151828. https://doi.org/10.1016/j.scitotenv.2021.151828
  • Liu, D., Yu, S., Xiao, Q., Qi, T., & Duan, H. (2021). Satellite estimation of dissolved organic carbon in eutrophic Lake Taihu, China. Remote Sensing of Environment, 264, 112572. https://doi.org/10.1016/j.rse.2021.112572
  • Lu, F., Chen, Z., Liu, W., & Shao, H. (2016). Modeling Chlorophyll-a concentrations using an artificial neural network for precisely eco-restoring lake basin. Ecological Engineering, 95, 422–429. https://doi.org/10.1016/j.ecoleng.2016.06.072
  • Luíza da Costa, N., Dias de Lima, M., & Barbosa, R. (2021). Evaluation of feature selection methods based on artificial neural network weights. Expert Systems with Applications, 168, 114312. https://doi.org/10.1016/j.eswa.2020.114312
  • Lu, H., & Ma, X. (2020). Hybrid decision tree-based machine learning models for short-term water quality prediction. Chemosphere, 249, 126169. https://doi.org/10.1016/j.chemosphere.2020.126169
  • Lundberg, S. M., & Lee, S.-I. (2017). A unified approach to interpreting model predictions. Proceedings of the 31st International Conference on Neural Information Processing Systems (pp. 4768–4777). Curran Associates Inc.
  • Luo, W., Zhu, S., Wu, S., & Dai, J. (2019). Comparing artificial intelligence techniques for Chlorophyll-a prediction in US lakes. Environmental Science and Pollution Research International, 26(29), 30524–30532. https://doi.org/10.1007/s11356-019-06360-y
  • Ly, Q. V., Nguyen, X. C., Lê, N. C., Truong, T. D., Hoang, T. H. T., Park, T. J., Maqbool, T., Pyo, J., Cho, K. H., Lee, K. S., & Hur, J. (2021). Application of machine learning for eutrophication analysis and algal bloom prediction in an urban river: A 10-year study of the Han River, South Korea. The Science of the Total Environment, 797, 149040. https://doi.org/10.1016/j.scitotenv.2021.149040
  • Maier, H. R., Jain, A., Dandy, G. C., & Sudheer, K. P. (2010). Methods used for the development of neural networks for the prediction of water resource variables in river systems: Current status and future directions. Environmental Modelling and Software, 25(8), 891–909. https://doi.org/10.1016/j.envsoft.2010.02.003
  • Moradi, S., Agostino, A., Gandomkar, Z., Kim, S., Hamilton, L., Sharma, A., Henderson, R., & Leslie, G. (2020). Quantifying natural organic matter concentration in water from climatological parameters using different machine learning algorithms. H2Open Journal, 3(1), 328–342. https://doi.org/10.2166/h2oj.2020.035
  • Nafsin, N., & Li, J. (2023). Prediction of total organic carbon and E. coli in rivers within the Milwaukee River basin using machine learning methods. Environmental Science: Advances, 2(2), 278–293. https://doi.org/10.1039/D2VA00285J
  • Nelson, N. G., Munoz-Carpena, R., Phlips, E. J., Kaplan, D., Sucsy, P., & Hendrickson, J. (2018). Revealing biotic and abiotic controls of harmful algal blooms in a shallow subtropical lake through statistical machine learning. Environmental Science & Technology, 52(6), 3527–3535. https://doi.org/10.1021/acs.est.7b05884
  • Nguyen, H. Q., Ha, N. T., Nguyen-Ngoc, L., & Pham, T. L. (2021). Comparing the performance of machine learning algorithms for remote and in situ estimations of Chlorophyll-a content: A case study in the Tri An Reservoir, Vietnam. Water Environment Research: A Research Publication of the Water Environment Federation, 93(12), 2941–2957. https://doi.org/10.1002/wer.1643
  • Nguyen, X. C., Nguyen, T. T. H., Hang, N. T. T., Thai, V. N., Doan, T. O., Duong, T. T., Duong, T. N., Hwang, Y., Lam, V. S., & Ly, Q. V. (2022). Insight into the adsorption of nutrients from water by pyrogenic carbonaceous adsorbents using a bootstrap method and machine learning. ACS ES and T Water, in press. https://doi.org/10.1021/acsestwater.2c00301
  • Nguyen, X. C., Seo, Y., Park, H.-Y., Begum, M. S., Lee, B. J., & Hur, J. (2023). Tracking the sources of dissolved organic matter under bio- and photo-transformation conditions using fluorescence spectrum-based machine learning techniques. Environmental Technology & Innovation, 31, 103179. https://doi.org/10.1016/j.eti.2023.103179
  • Olson, R. S., La Cava, W., Orzechowski, P., Urbanowicz, R. J., & Moore, J. H. (2017). PMLB: A large benchmark suite for machine learning evaluation and comparison. BioData Mining, 10(1), 36. https://doi.org/10.1186/s13040-017-0154-4
  • Ortiz-Lopez, C., Bouchard, C., & Rodriguez, M. (2022). Machine learning models with potential application to predict source water quality for treatment purposes: A critical review. Environmental Technology Reviews, 11(1), 118–147. https://doi.org/10.1080/21622515.2022.2118084
  • Park, Y., Cho, K. H., Park, J., Cha, S. M., & Kim, J. H. (2015). Development of early-warning protocol for predicting Chlorophyll-a concentration using machine learning models in freshwater and estuarine reservoirs, Korea. The Science of the Total Environment, 502, 31–41. https://doi.org/10.1016/j.scitotenv.2014.09.005
  • Pereira, F. F., Mendes, T. S. G., Simoes, S. J. C., de Andrade, M. R. M., Reiss, M. L. L., Renk, J. F. C., & Santos, T. C. D. (2023). Comparison of LiDAR- and UAV-derived data for landslide susceptibility mapping using Random Forest algorithm. Landslides, 20, 579–600.
  • Rajaee, T., & Jafari, H. (2020). Two decades on the artificial intelligence models advancement for modeling river sediment concentration: State-of-the-art. Journal of Hydrology, 588, 125011. https://doi.org/10.1016/j.jhydrol.2020.125011
  • Rajaee, T., Khani, S., & Ravansalar, M. (2020). Artificial intelligence-based single and hybrid models for prediction of water quality in rivers: A review. Chemometrics and Intelligent Laboratory Systems, 200, 103978. https://doi.org/10.1016/j.chemolab.2020.103978
  • Ribeiro, M. T., Singh, S., & Guestrin, C. (2016). “Why should i trust you?”: Explaining the predictions of any classifier. Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (pp. 1135–1144). Association for Computing Machinery.
  • Ritter, A., & Muñoz-Carpena, R. (2013). Performance evaluation of hydrological models: Statistical significance for reducing subjectivity in goodness-of-fit assessments. Journal of Hydrology, 480, 33–45. https://doi.org/10.1016/j.jhydrol.2012.12.004
  • Russell, S., & Norvig, P. (2016). Artificial intelligence: A modern approach. Pearson.
  • Sagan, V., Peterson, K. T., Maimaitijiang, M., Sidike, P., Sloan, J., Greeling, B. A., Maalouf, S., & Adams, C. (2020). Monitoring inland water quality using remote sensing: Potential and limitations of spectral indices, bio-optical simulations, machine learning, and cloud computing. Earth-Science Reviews, 205, 103187. https://doi.org/10.1016/j.earscirev.2020.103187
  • Shan, K., Ouyang, T., Wang, X., Yang, H., Zhou, B., Wu, Z., & Shang, M. (2022). Temporal prediction of algal parameters in Three Gorges Reservoir based on highly time-resolved monitoring and long short-term memory network. Journal of Hydrology, 605, 127304. https://doi.org/10.1016/j.jhydrol.2021.127304
  • Sheykhmousa, M., Mahdianpari, M., Ghanbari, H., Mohammadimanesh, F., Ghamisi, P., & Homayouni, S. (2020). Support vector machine versus random forest for remote sensing image classification: A meta-analysis and systematic review. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 13, 6308–6325. https://doi.org/10.1109/JSTARS.2020.3026724
  • Shi, X., Gu, L., Jiang, T., Zheng, X., Dong, W., & Tao, Z. (2022). Retrieval of Chlorophyll-a concentrations using Sentinel-2 MSI imagery in Lake Chagan based on assessments with machine learning models. Remote Sensing, 14(19), 4924. https://doi.org/10.3390/rs14194924
  • Sun, X., Zhang, Y., Zhang, Y., Shi, K., Zhou, Y., & Li, N. (2021). Machine learning algorithms for chromophoric dissolved organic matter (Cdom) estimation based on LANDSAT 8 images. Remote Sensing, 13(18), 3560. https://doi.org/10.3390/rs13183560
  • Talib, A., Recknagel, F., Cao, H., & van der Molen, D. T. (2008). Forecasting and explanation of algal dynamics in two shallow lakes by recurrent artificial neural network and hybrid evolutionary algorithm. Mathematics and Computers in Simulation, 78(2–3), 424–434. https://doi.org/10.1016/j.matcom.2008.01.037
  • Tian, L., Zhang, Z., Wang, Z., Zhang, P., Xiong, C., Kuang, Y., Peng, X., Yu, M., & Qian, Y. (2023). Compositional variations in algal organic matter during distinct growth phases in Karst water. Frontiers in Environmental Science, 11, 1112522. https://doi.org/10.3389/fenvs.2023.1112522
  • Tiyasha  , Tung, T. M., & Yaseen, Z. M. (2020). A survey on river water quality modelling using artificial intelligence models: 2000–2020. Journal of Hydrology, 585, 124670. https://doi.org/10.1016/j.jhydrol.2020.124670
  • Treuer, G., Kirchhoff, C., Lemos, M. C., & McGrath, F. (2021). Challenges of managing harmful algal blooms in US drinking water systems. Nature Sustainability, 4(11), 958–964. https://doi.org/10.1038/s41893-021-00770-y
  • Walter, M., Recknagel, F., Carpenter, C., & Bormans, M. (2001). Predicting eutrophication effects in the Burrinjuck Reservoir (Australia) by means of the deterministic model SALMO and the recurrent neural network model ANNA. Ecological Modelling, 146(1–3), 97–113. https://doi.org/10.1016/S0304-3800(01)00299-X
  • Wang, C., Mao, G., Liao, K., Ben, W., Qiao, M., Bai, Y., & Qu, J. (2021). Machine learning approach identifies water sample source based on microbial abundance. Water Research, 199, 117185. https://doi.org/10.1016/j.watres.2021.117185
  • Wang, F., Wang, X., Chen, B., Zhao, Y., & Yang, Z. (2013). Chlorophyll a simulation in a lake ecosystem using a model with wavelet analysis and artificial neural network. Environmental Management, 51(5), 1044–1054. https://doi.org/10.1007/s00267-013-0029-5
  • Wei, B., Sugiura, N., & Maekawa, T. (2001). Use of artificial neural network in the prediction of algal blooms. Water Research, 35(8), 2022–2028. https://doi.org/10.1016/s0043-1354(00)00464-4
  • Wilson, H., & Recknagel, F. (2001). Towards a generic artificial neural network model for dynamic predictions of algal abundance in freshwater lakes. Ecological Modelling, 146(1-3), 69–84. https://doi.org/10.1016/S0304-3800(01)00297-6
  • Xia, R., Wang, G., Zhang, Y., Yang, P., Yang, Z., Ding, S., Jia, X., Yang, C., Liu, C., Ma, S., Lin, J., Wang, X., Hou, X., Zhang, K., Gao, X., Duan, P., & Qian, C. (2020). River algal blooms are well predicted by antecedent environmental conditions. Water Research, 185, 116221. https://doi.org/10.1016/j.watres.2020.116221
  • Xiao, X., He, J., Huang, H., Miller, T. R., Christakos, G., Reichwaldt, E. S., Ghadouani, A., Lin, S., Xu, X., & Shi, J. (2017). A novel single-parameter approach for forecasting algal blooms. Water Research, 108, 222–231. https://doi.org/10.1016/j.watres.2016.10.076
  • Xu, S., Li, S., Tao, Z., Song, K., Wen, Z., Li, Y., & Chen, F. (2022). Remote sensing of Chlorophyll-a in Xinkai Lake using machine learning and GF-6 WFV images. Remote Sensing, 14(20), 5136. https://doi.org/10.3390/rs14205136
  • Yamashita, Y., Maie, N., Briceño, H., & Jaffé, R. (2010). Optical characterization of dissolved organic matter in tropical rivers of the Guayana Shield, Venezuela. Journal of Geophysical Research: Biogeosciences, 115(G1), G00F10. https://doi.org/10.1029/2009JG000987
  • Yeon, I. S., Kim, J. H., & Jun, K. W. (2008). Application of artificial intelligence models in water quality forecasting. Environmental Technology, 29(6), 625–631. https://doi.org/10.1080/09593330801984456
  • Yu, P., Gao, R., Zhang, D., & Liu, Z.-P. (2021). Predicting coastal algal blooms with environmental factors by machine learning methods. Ecological Indicators, 123, 107334. https://doi.org/10.1016/j.ecolind.2020.107334
  • Yu, Z., Yang, K., Luo, Y., & Shang, C. (2020). Spatial-temporal process simulation and prediction of Chlorophyll-a concentration in Dianchi Lake based on wavelet analysis and long-short term memory network. Journal of Hydrology, 582, 124488. https://doi.org/10.1016/j.jhydrol.2019.124488
  • Zhang, K., Zhong, S., & Zhang, H. (2020). Predicting aqueous adsorption of organic compounds onto biochars, carbon nanotubes, granular activated carbons, and resins with machine learning. Environmental Science & Technology, 54(11), 7008–7018. https://doi.org/10.1021/acs.est.0c02526
  • Zhao, X., Li, Y., Chen, Y., Qiao, X., & Qian, W. (2022). Water Chlorophyll a estimation using UAV-based multispectral data and machine learning. Drones, 7(1), 2. https://doi.org/10.3390/drones7010002
  • Zhao, X., Xu, H., Ding, Z., Wang, D., Deng, Z., Wang, Y., Lu, Z., Wang, G., Wu, T., & Li, W. (2021). Comparing deep learning with several typical methods in prediction of assessing Chlorophyll-a by remote sensing: A case study in Taihu Lake, China. Water Supply, 21(7), 3710–3724. https://doi.org/10.2166/ws.2021.137
  • Zheng, L., Wang, H., Liu, C., Zhang, S., Ding, A., Xie, E., Li, J., & Wang, S. (2021). Prediction of harmful algal blooms in large water bodies using the combined EFDC and LSTM models. Journal of Environmental Management, 295, 113060. https://doi.org/10.1016/j.jenvman.2021.113060
  • Zhu, W. D., Qian, C. Y., He, N. Y., Kong, Y. X., Zou, Z. Y., & Li, Y. W. (2022b). Research on Chlorophyll-a concentration retrieval based on BP neural network model—Case study of Dianshan Lake, China. Sustainability (Switzerland), 14(14), 8894. https://doi.org/10.3390/su14148894
  • Zhu, M., Wang, J., Yang, X., Zhang, Y., Zhang, L., Ren, H., Wu, B., & Ye, L. (2022a). A review of the application of machine learning in water quality evaluation. Eco-Environment & Health, 1(2), 107–116. https://doi.org/10.1016/j.eehl.2022.06.001