226
Views
11
CrossRef citations to date
0
Altmetric
Review Articles

Recent advances and optimization strategies for the microbial degradation of PCBs: From monocultures to microbial consortia

, , &
Pages 1023-1049 | Published online: 29 Nov 2023

References

  • Abraham, W.-R., Nogales, B., Golyshin, P. N., Pieper, D. H., & Timmis, K. N. (2002). Polychlorinated biphenyl-degrading microbial communities in soils and sediments. Current Opinion in Microbiology, 5(3), 246–253. https://doi.org/10.1016/s1369-5274(02)00323-5
  • Adrian, L., Dudkova, V., Demnerova, K., & Bedard, D. L. (2009). “Dehalococcoides” sp. strain CBDB1 extensively dechlorinates the commercial polychlorinated biphenyl mixture aroclor 1260. Applied and Environmental Microbiology, 75(13), 4516–4524. https://doi.org/10.1128/AEM.00102-09
  • Albertsen, M., Hugenholtz, P., Skarshewski, A., Nielsen, K. L., Tyson, G. W., & Nielsen, P. H. (2013). Genome sequences of rare, uncultured bacteria obtained by differential coverage binning of multiple metagenomes. Nature Biotechnology, 31(6), 533–538. https://doi.org/10.1038/nbt.2579
  • Alejandra Sadanoski, M., Silvia Tatarin, A., Lucrecia Barchuk, M., Gonzalez, M., Nicolas Pegoraro, C., Isabel Fonseca, M., Noemi Levin, L., & Lidia Villalba, L. (2020). Evaluation of bioremediation strategies for treating recalcitrant halo-organic pollutants in soil environments. Ecotoxicology and Environmental Safety, 202, 110929. https://doi.org/10.1016/j.ecoenv.2020.110929
  • Chelaliche, A. S., Alvarenga, A. E., Lopez, C. A. M., Zapata, P. D., & Fonseca, M. I. (2021). Proteomic insight on the polychlorinated biphenyl degrading mechanism of Pleurotus pulmonarius LBM 105. Chemosphere, 265, 129093. https://doi.org/10.1016/j.chemosphere.2020.129093
  • Azubuike, C. C., Chikere, C. B., & Okpokwasili, G. C. (2016). Bioremediation techniques–classification based on site of application: Principles, advantages, limitations and prospects. World Journal of Microbiology & Biotechnology, 32(11), 180. https://doi.org/10.1007/s11274-016-2137-x
  • Bedard, D. L., Bailey, J. J., Reiss, B. L., & Jerzak, G. V. (2006). Development and characterization of stable sediment-free anaerobic bacterial enrichment cultures that dechlorinate Aroclor 1260. Applied and Environmental Microbiology, 72(4), 2460–2470. https://doi.org/10.1128/AEM.72.4.2460-2470.2006
  • Ben Said, S., & Or, D. (2017). Synthetic microbial ecology: Engineering habitats for modular consortia. Frontiers in Microbiology, 8, 1125. https://doi.org/10.3389/fmicb.2017.01125
  • Benitez, S. F., Sadañoski, M. A., Velázquez, J. E., Zapata, P. D., & Fonseca, M. I. (2021). Comparative study of single cultures and a consortium of white rot fungi for polychlorinated biphenyls treatment. Journal of Applied Microbiology, 131(4), 1775–1786. https://doi.org/10.1111/jam.15073
  • Cao, Y., Jia, L., Xu, L., & Xie, J. (2010). Analysis of different PCBs degradation abilities of biphenyl dioxygenase derived from Enterobacter sp. LY402 by molecular simulation. Journal of Biotechnology, 150, 230–231. https://doi.org/10.1016/j.jbiotec.2010.09.074
  • Cao, Y.-M., Xu, L., & Jia, L.-Y. (2011). Analysis of PCBs degradation abilities of biphenyl dioxygenase derived from Enterobacter sp LY402 by molecular simulation. New Biotechnology, 29(1), 90–98. https://doi.org/10.1016/j.nbt.2011.08.005
  • Cervantes-Gonzalez, E., Guevara-Garcia, M. A., Garcia-Mena, J., & Ovando-Medina, V. M. (2019). Microbial diversity assessment of polychlorinated biphenyl-contaminated soils and the biostimulation and bioaugmentation processes. Environmental Monitoring and Assessment, 191(2), 118. https://doi.org/10.1007/s10661-019-7227-4
  • Chain, P. S. G., Denef, V. J., Konstantinidis, K. T., Vergez, L. M., Agullo, L., Reyes, V. L., Hauser, L., Cordova, M., Gomez, L., Gonzalez, M., Land, M., Lao, V., Larimer, F., Lipuma, J. J., Mahenthiralingam, E., Malfatti, S. A., Marx, C. J., Parnell, J. J., Ramette, A., … Tiedje, J. M. (2006). Burkholderia xenovorans LB400 harbors a multi-replicon, 9.73-Mbp genome shaped for versatility. Proceedings of the National Academy of Sciences of the United States of America, 103(42), 15280–15287. https://doi.org/10.1073/pnas.0606924103
  • Chen, F., Hao, S., Qu, J., Ma, J., & Zhang, S. (2015). Enhanced biodegradation of polychlorinated biphenyls by defined bacteria-yeast consortium. Annals of Microbiology, 65(4), 1847–1854. https://doi.org/10.1007/s13213-014-1023-8
  • Chen, R., Zhao, Z., Xu, T., & Jia, X. (2023). Microbial consortium HJ-SH with very high degradation efficiency of phenanthrene. Microorganisms, 11(10), 2383. https://doi.org/10.3390/microorganisms11102383
  • Chun, C. L., Payne, R. B., Sowers, K. R., & May, H. D. (2013). Electrical stimulation of microbial PCB degradation in sediment. Water Research, 47(1), 141–152. https://doi.org/10.1016/j.watres.2012.09.038
  • Chun, S. C., Muthu, M., Hasan, N., Tasneem, S., & Gopal, J. (2019). Mycoremediation of PCBs by Pleurotus ostreatus: Possibilities and Prospects. Applied Sciences-Basel, 9(19), 4185. https://doi.org/10.3390/app9194185
  • Cutter, L., Sowers, K. R., & May, H. D. (1998). Microbial dechlorination of 2,3,5,6-tetrachlorobiphenyl under anaerobic conditions in the absence of soil or sediment. Applied and Environmental Microbiology, 64(8), 2966–2969. https://doi.org/10.1128/AEM.64.8.2966-2969.1998
  • Cvančarová, M., Křesinová, Z., Filipová, A., Covino, S., & Cajthaml, T. (2012). Biodegradation of PCBs by ligninolytic fungi and characterization of the degradation products. Chemosphere, 88(11), 1317–1323. https://doi.org/10.1016/j.chemosphere.2012.03.107
  • Dela Cruz, T. E. E., Behr, J. H., Geistlinger, J., Grosch, R., & Witzel, K. (2023). Monitoring of an applied beneficial Trichoderma Strain in root-associated soil of field-grown maize by MALDI-TOF MS. Microorganisms, 11(7), 1655. https://doi.org/10.3390/microorganisms11071655
  • de Lima e Silva, M. R., de Lima Gomes, P. C. F., Okada, D. Y., Sakamoto, I. K., & Amancio Varesche, M. B. (2020). The use of non-adapted anaerobic consortium in batch reactors enable to couple polychlorinated biphenyl degradation and community adaptation. Environmental Technology, 41(14), 1766–1779. https://doi.org/10.1080/09593330.2018.1547794
  • De, S., Perkins, M., & Dutta, S. K. (2006). Nitrate reductase gene involvement in hexachlorobiphenyl dechlorination by Phanerochaete chrysosporium. Journal of Hazardous Materials, 135(1-3), 350–354. https://doi.org/10.1016/j.jhazmat.2005.11.073
  • Egorova, D. O., Demakov, V. A., & Plotnikova, E. G. (2013). Bioaugmentation of a polychlorobiphenyl contaminated soil with two aerobic bacterial strains. Journal of Hazardous Materials, 261, 378–386. https://doi.org/10.1016/j.jhazmat.2013.07.067
  • Fagervold, S. K., May, H. D., & Sowers, K. R. (2007). Microbial reductive dechlorination of aroclor 1260 in Baltimore harbor sediment microcosms is catalyzed by three phylotypes within the phylum Chloroflexi. Applied and Environmental Microbiology, 73(9), 3009–3018. https://doi.org/10.1128/AEM.02958-06
  • Field, J. A., & Sierra-Alvarez, R. (2008). Microbial transformation and degradation of polychlorinated biphenyls. Environmental Pollution (Barking, Essex: 1987), 155(1), 1–12. https://doi.org/10.1016/j.envpol.2007.10.016
  • Furukawa, K., & Fujihara, H. (2008). Microbial degradation of polychlorinated biphenyls: Biochemical and molecular features. Journal of Bioscience and Bioengineering, 105(5), 433–449. https://doi.org/10.1263/jbb.105.433
  • Garrido-Sanz, D., Manzano, J., Martín, M., Redondo-Nieto, M., & Rivilla, R. (2018). Metagenomic analysis of a biphenyl-degrading soil bacterial consortium reveals the metabolic roles of specific populations. Frontiers in Microbiology, 9, 232. https://doi.org/10.3389/fmicb.2018.00232
  • Garrido-Sanz, D., Sansegundo-Lobato, P., Redondo-Nieto, M., Suman, J., Cajthaml, T., Blanco-Romero, E., Martin, M., Uhlik, O., & Rivilla, R. (2020). Analysis of the biodegradative and adaptive potential of the novel polychlorinated biphenyl degrader Rhodococcus sp. WAY2 revealed by its complete genome sequence. Microbial Genomics, 6(4), 363. https://doi.org/10.1099/mgen.0.000363
  • Gaur, N., Narasimhulu, K., & PydiSetty, Y. (2018). Recent advances in the bio-remediation of persistent organic pollutants and its effect on environment. Journal of Cleaner Production, 198, 1602–1631. https://doi.org/10.1016/j.jclepro.2018.07.076
  • Gayosso-Canales, M., Rodríguez-Vázquez, R., Esparza-García, F. J., & Bermúdez-Cruz, R. M. (2012). PCBs stimulate laccase production and activity in Pleurotus ostreatus thus promoting their removal. Folia Microbiologica, 57(2), 149–158. https://doi.org/10.1007/s12223-012-0106-9
  • Germain, J., Raveton, M., Binet, M. N., & Mouhamadou, B. (2021). Potentiality of native ascomycete strains in bioremediation of highly polychlorinated biphenyl contaminated soils. Microorganisms, 9(3), 612. https://doi.org/10.3390/microorganisms9030612
  • Gibson, D. T., Cruden, D. L., Haddock, J. D., Zylstra, G. J., & Brand, J. M. (1993). Oxidation of polychlorinated biphenyls by Pseudomonas sp. strain LB400 and Pseudomonas pseudoalcaligenes KF707. Journal of Bacteriology, 175(14), 4561–4564. https://doi.org/10.1128/jb.175.14.4561-4564.1993
  • Grimm, F. A., Hu, D., Kania-Korwel, I., Lehmler, H. J., Ludewig, G., Hornbuckle, K. C., Duffel, M. W., Bergman, Å., & Robertson, L. W. (2015). Metabolism and metabolites of polychlorinated biphenyls. Critical Reviews in Toxicology, 45(3), 245–272. https://doi.org/10.3109/10408444.2014.999365
  • Guerra, R., Pasteris, A., Righi, S., & Ok, G. (2019). Historical record of polychlorinated biphenyls (PCBs) in the continental shelf of the Korea Strait. Chemosphere, 237, 124438. https://doi.org/10.1016/j.chemosphere.2019.124438
  • Hassan, A., Hamid, F. S., Pariatamby, A., Suhaimi, N. S. M., Razali, N., Ling, K. N. H., & Mohan, P. (2023). Bioaugmentation-assisted bioremediation and biodegradation mechanisms for PCB in contaminated environments: A review on sustainable clean-up technologies. Journal of Environmental Chemical Engineering, 11(3), 110055. https://doi.org/10.1016/j.jece.2023.110055
  • Hernandez-Sanchez, V., Lang, E., & Wittich, R.-M. (2013). The three-species consortium of genetically improved strains Cupriavidus necator RW112, Burkholderia xenovorans RW118, and Pseudomonas pseudoalcaligenes RW120 grows with technical polychlorobiphenyl, Aroclor 1242. Frontiers in Microbiology, 4, 90. https://doi.org/10.3389/fmicb.2013.00090
  • Hirose, J., Fujihara, H., Watanabe, T., Kimura, N., Suenaga, H., Futagami, T., Goto, M., Suyama, A., & Furukawa, K. (2019). Biphenyl/pcb degrading bph genes of ten bacterial strains isolated from biphenyl-contaminated soil in kitakyushu, japan: Comparative and dynamic features as integrative conjugative elements (ICEs). Genes, 10(5), 404. https://doi.org/10.3390/genes10050404
  • Holmes, V. F., He, J., Lee, P. K. H., & Alvarez-Cohen, L. (2006). Discrimination of multiple Dehalococcoides strains in a trichloroethene enrichment by quantification of their reductive dehalogenase genes. Applied and Environmental Microbiology, 72(9), 5877–5883. https://doi.org/10.1128/AEM.00516-06
  • Horváthová, H., Lászlová, K., & Dercová, K. (2018). Bioremediation of PCB-contaminated shallow river sediments: The efficacy of biodegradation using individual bacterial strains and their consortia. Chemosphere, 193, 270–277. https://doi.org/10.1016/j.chemosphere.2017.11.012
  • Hu, J., Qian, M., Zhang, Q., Cui, J., Yu, C., Su, X., Shen, C., Hashmi, M. Z., & Shi, J. (2015). Sphingobium fuliginis HC3: A novel and robust isolated biphenyl- and polychlorinated biphenyls-degrading bacterium without dead-end intermediates accumulation. PLoS One, 10(4), e0122740. https://doi.org/10.1371/journal.pone.0122740
  • Hu, X., & Zhou, Q. (2013). Health and ecosystem risks of graphene. Chemical Reviews, 113(5), 3815–3835. https://doi.org/10.1021/cr300045n
  • Jia, L.-Y., Zheng, A.-P., Xu, L., Huang, X.-D., Zhang, Q., & Yang, F.-L. (2008). Isolation and characterization of comprehensive polychlorinated biphenyl-degrading bacterium, Enterobacter sp LY402. Journal of Microbiology and Biotechnology, 18, 952–957.
  • Jing, R., Fusi, S., & Kjellerup, B. V. (2018). Remediation of polychlorinated biphenyls (PCBs) in contaminated soils and sediment: State of knowledge and perspectives. Frontiers in Environmental Science, 6, 79. https://doi.org/10.3389/fenvs.2018.00079
  • Kamei, I., Kogura, R., & Kondo, R. (2006a). Metabolism of 4,4’-dichlorobiphenyl by white-rot fungi Phanerochaete chrysosporium and Phanerochaete sp MZ142. Applied Microbiology and Biotechnology, 72(3), 566–575. https://doi.org/10.1007/s00253-005-0303-4
  • Kamei, I., Sonoki, S., Haraguchi, K., & Kondo, R. (2006b). Fungal bioconversion of toxic polychlorinated biphenyls by white-rot fungus, Phlebia brevispora. Applied Microbiology and Biotechnology, 73(4), 932–940. https://doi.org/10.1007/s00253-006-0529-9
  • Keep, N. H., Ward, J. M., Cohen-Gonsaud, M., & Henderson, B. (2006). Wake up! Peptidoglycan lysis and bacterial non-growth states. Trends in Microbiology, 14(6), 271–276. https://doi.org/10.1016/j.tim.2006.04.003
  • Khan, A. A., & Walia, S. K. (1991). Expression, localization, and functional analysis of polychlorinated biphenyl degradation genes cbpABCD of Pseudomonas putida. Applied and Environmental Microbiology, 57(5), 1325–1332. https://doi.org/10.1128/aem.57.5.1325-1332.1991
  • Kirschling, T. L., Gregory, K. B., Minkley, J. E. G., Lowry, G. V., & Tilton, R. D. (2010). Impact of nanoscale zero valent iron on geochemistry and microbial populations in trichloroethylene contaminated aquifer materials. Environmental Science & Technology, 44(9), 3474–3480. https://doi.org/10.1021/es903744f
  • Klocke, C., & Lein, P. J. (2020). Evidence implicating non-dioxin-like congeners as the key mediators of polychlorinated biphenyl (PCB) developmental neurotoxicity. International Journal of Molecular Sciences, 21(3), 1013. https://doi.org/10.3390/ijms21031013
  • Knight, R., Vrbanac, A., Taylor, B. C., Aksenov, A., Callewaert, C., Debelius, J., Gonzalez, A., Kosciolek, T., McCall, L.-I., McDonald, D., Melnik, A. V., Morton, J. T., Navas, J., Quinn, R. A., Sanders, J. G., Swafford, A. D., Thompson, L. R., Tripathi, A., Xu, Z. Z., … Dorrestein, P. C. (2018). Best practices for analysing microbiomes. Nature Reviews. Microbiology, 16(7), 410–422. https://doi.org/10.1038/s41579-018-0029-9
  • Kocur, C. M. D., Lomheim, L., Molenda, O., Weber, K. P., Austrins, L. M., Sleep, B. E., Boparai, H. K., Edwards, E. A., & O’Carroll, D. M. (2016). Long-term field study of microbial community and dechlorinating activity following carboxymethyl cellulose-stabilized nanoscale zero-valent iron injection. Environmental Science & Technology, 50(14), 7658–7670. https://doi.org/10.1021/acs.est.6b01745
  • Kubatova, A., Erbanova, P., Eichlerova, I., Homolka, L., Nerud, F., & Sasek, V. (2001). PCB congener selective biodegradation by the white rot fungus Pleurotus ostreatus in contaminated soil. Chemosphere, 43(2), 207–215. https://doi.org/10.1016/s0045-6535(00)00154-5
  • LaRoe, S. L., Fricker, A. D., & Bedard, D. L. (2014). Dehalococcoides mccartyi strain JNA in pure culture extensively dechlorinates aroclor 1260 according to polychlorinated biphenyl (PCB) dechlorination process N. Environmental Science & Technology, 48(16), 9187–9196. https://doi.org/10.1021/es500872t
  • Laszlova, K., Dercova, K., Horvathova, H., Murinova, S., Skarba, J., & Dudasova, H. (2016). Assisted bioremediation approaches – Biostimulation and bioaugmentation – Used in the removal of organochlorinated pollutants from the contaminated bottom sediments. International Journal of Environmental Research, 10, 367–378.
  • Li, J., Min, J., Wang, Y., Chen, W., Kong, Y., Guo, T., Mahto, J. K., Sylvestre, M., & Hu, X. (2020). Engineering Burkholderia xenovorans IB400 bphA through site-directed mutagenesis at position 283. Applied and Environmental Microbiology, 86(19), e01040-20. https://doi.org/10.1128/AEM.01040-20
  • Li, R., Teng, Y., Sun, Y., Xu, Y., Wang, Z., Wang, X., Hu, W., Ren, W., Zhao, L., & Luo, Y. (2023). Chemodiversity of soil organic matters determines biodegradation of polychlorinated biphenyls by a graphene oxide-assisted bacterial agent. Journal of Hazardous Materials, 449, 131015. https://doi.org/10.1016/j.jhazmat.2023.131015
  • Li, Z., Wang, X., & Zhang, H. (2019). Balancing the non-linear rosmarinic acid biosynthetic pathway by modular co-culture engineering. Metabolic Engineering, 54, 1–11. https://doi.org/10.1016/j.ymben.2019.03.002
  • Lin, F., Sun, J., Liu, N., & Zhu, L. (2020). Phytotoxicity and metabolic responses induced by tetrachlorobiphenyl and its hydroxylated and methoxylated derivatives in rice (Oryza sative L.). Environment International, 139, 105695. https://doi.org/10.1016/j.envint.2020.105695
  • Lu, Y., Yu, Y., Zhou, R., Sun, W., Dai, C. Y., Wan, P., Zhang, L. Y., Hao, D. Y., & Ren, H. J. (2011). Cloning and characterisation of a novel 2,4-dichlorophenol hydroxylase from a metagenomic library derived from polychlorinated biphenyl-contaminated soil. Biotechnology Letters, 33(6), 1159–1167. https://doi.org/10.1007/s10529-011-0549-0
  • Marchal, C., Germain, J., Raveton, M., Lyonnard, B., Arnoldi, C., Binet, M. N., & Mouhamadou, B. (2021). Molecular characterization of fungal biodiversity in long-term polychlorinated biphenyl-contaminated soils. Microorganisms, 9(10), 2051. https://doi.org/10.3390/microorganisms9102051
  • Matturro, B., Mascolo, G., & Rossetti, S. (2020). Microbiome changes and oxidative capability of an anaerobic PCB dechlorinating enrichment culture after oxygen exposure. New Biotechnology, 56, 96–102. https://doi.org/10.1016/j.nbt.2019.12.004
  • Mikesková, H., Novotný, Č., & Svobodová, K. (2012). Interspecific interactions in mixed microbial cultures in a biodegradation perspective. Applied Microbiology and Biotechnology, 95(4), 861–870. https://doi.org/10.1007/s00253-012-4234-6
  • Mir, S., & Dhawan, N. (2022). A comprehensive review on the recycling of discarded printed circuit boards for resource recovery. Resources Conservation and Recycling, 178, 106027. https://doi.org/10.1016/j.resconrec.2021.106027
  • Mo, F., Song, C., Zhou, Q., Xue, W., Ouyang, S., Wang, Q., Hou, Z., Wang, S., & Wang, J. (2023). The optimized Fenton-like activity of Fe single-atom sites by Fe atomic clusters-mediated electronic configuration modulation. Proceedings of the National Academy of Sciences of the United States of America, 120(15), e2300281120. https://doi.org/10.1073/pnas.2300281120
  • Mukherjee, S., Narula, R., Bhattacharjee, S., Dutta, D., Bose, I., Mahakud, J., Paul, S., Bhattacharjee, S., & Paul, S. (2021). Bioremediation: The eco-friendly solution to the hazardous problem of environmental pollution. Journal of Environmental Engineering and Landscape Management, 29(4), 477–483. https://doi.org/10.3846/jeelm.2021.14439
  • Nayfach, S., Shi, Z. J., Seshadri, R., Pollard, K. S., & Kyrpides, N. C. (2019). New insights from uncultivated genomes of the global human gut microbiome. Nature, 568(7753), 505–510. +. https://doi.org/10.1038/s41586-019-1058-x
  • Nielsen, A. T., Tolker-Nielsen, T., Barken, K. B., & Molin, S. (2000). Role of commensal relationships on the spatial structure of a surface-attached microbial consortium. Environmental Microbiology, 2(1), 59–68. https://doi.org/10.1046/j.1462-2920.2000.00084.x
  • Nogales, B., Moore, E. R. B., Abraham, W. R., & Timmis, K. N. (1999). Identification of the metabolically active members of a bacterial community in a polychlorinated biphenyl polluted moorland soil. Environmental Microbiology, 1(3), 199–212. https://doi.org/10.1046/j.1462-2920.1999.00024.x
  • Nuzzo, A., Negroni, A., Zanaroli, G., & Fava, F. (2017). Identification of two organohalide-respiring Dehalococcoidia associated to different dechlorination activities in PCB-impacted marine sediments. Microbial Cell Factories, 16(1), 127. https://doi.org/10.1186/s12934-017-0743-4
  • Ouyang, X. F., Yin, H., Yu, X. L., Guo, Z. Y., Zhu, M. H., Lu, G. N., & Dang, Z. (2021). Enhanced bioremediation of 2,3 ‘,4,4 ‘,5-pentachlorodiphenyl by consortium GYB1 immobilized on sodium alginate-biochar. The Science of the Total Environment, 788, 147774. https://doi.org/10.1016/j.scitotenv.2021.147774
  • Passatore, L., Rossetti, S., Juwarkar, A. A., & Massacci, A. (2014). Phytoremediation and bioremediation of polychlorinated biphenyls (PCBs): State of knowledge and research perspectives. Journal of Hazardous Materials, 278, 189–202. https://doi.org/10.1016/j.jhazmat.2014.05.051
  • Pathiraja, G., Egodawatta, P., Goonetilleke, A., & Te’o, V. S. J. (2019). Effective degradation of polychlorinated biphenyls by a facultative anaerobic bacterial consortium using alternating anaerobic aerobic treatments. The Science of the Total Environment, 659, 507–514. https://doi.org/10.1016/j.scitotenv.2018.12.385
  • Payne, R. B., Fagervold, S. K., May, H. D., & Sowers, K. R. (2013). Remediation of polychlorinated biphenyl impacted sediment by concurrent bioaugmentation with anaerobic halorespiring and aerobic degrading bacteria. Environmental Science & Technology, 47(8), 3807–3815. https://doi.org/10.1021/es304372t
  • Perigon, S., Massier, M., Germain, J., Binet, M.-N., Legay, N., & Mouhamadou, B. (2019). Metabolic adaptation of fungal strains in response to contamination by polychlorinated biphenyls. Environmental Science and Pollution Research International, 26(15), 14943–14950. https://doi.org/10.1007/s11356-019-04701-5
  • Perumbakkam, S., Hess, T. F., & Crawford, R. L. (2006). A bioremediation approach using natural transformation in pure-culture and mixed-population biofilms. Biodegradation, 17(6), 545–557. https://doi.org/10.1007/s10532-005-9025-7
  • Pino, N. J., Munera, L. M., & Penuela, G. A. (2016a). Root exudates and plant secondary metabolites of different plants enhance polychlorinated biphenyl degradation by rhizobacteria. Bioremediation Journal, 20(2), 108–116. https://doi.org/10.1080/10889868.2015.1124065
  • Pino, N. J., Munera, L. M., & Penuela, G. A. (2016b). Bioaugmentation with immobilized microorganisms to enhance phytoremediation of PCB-contaminated soil. Soil & Sediment Contamination, 25(4), 419–430. https://doi.org/10.1080/15320383.2016.1148010
  • Plackova, M., Svobodova, K., & Cajthaml, T. (2012). Laccase activity profiling and gene expression in PCB-degrading cultures of Trametes versicolor. International Biodeterioration & Biodegradation, 71, 22–28. https://doi.org/10.1016/j.ibiod.2012.03.005
  • Pous, N., Balaguer, M. D., Colprim, J., & Puig, S. (2018). Opportunities for groundwater microbial electro-remediation. Microbial Biotechnology, 11(1), 119–135. https://doi.org/10.1111/1751-7915.12866
  • Preena, P. G., Achuthan, C., Kumar, V. J. R., Boobal, R., Deepa, G. D., Puthumana, J., Poulose, S., Surekhamol, I. S., & Singh, I. S. B. (2019). Community composition of marine and brackish water ammonia-oxidizing consortia developed for aquaculture application. Water Science and Technology: A Journal of the International Association on Water Pollution Research, 79(5), 1017–1028. https://doi.org/10.2166/wst.2019.029
  • Qiu, L., Wang, H., & Wang, X. (2016). Isolation and characterization of a cold-resistant PCB209-degrading bacterial strain from river sediment and its application in bioremediation of contaminated soil. Journal of Environmental Science and Health. Part A, Toxic/Hazardous Substances & Environmental Engineering, 51(3), 204–212. https://doi.org/10.1080/10934529.2015.1094324
  • Rodrigues, J. L. M., Kachel, C. A., Aiello, M. R., Quensen, J. F., Maltseva, O. V., Tsoi, T. V., & Tiedje, J. M. (2006). Degradation of Aroclor 1242 dechlorination products in sediments by Burkholderia xenovorans LB400(ohb) and Rhodococcus sp. strain RHA1(fcb). Applied and Environmental Microbiology, 72(4), 2476–2482. https://doi.org/10.1128/AEM.72.4.2476-2482.2006
  • Rodrigues, J. L. M., Maltseva, O. V., Tsoi, T. V., Helton, R. R., Quensen, J. F., Fukuda, M., & Tiedje, J. M. (2001). Development of a Rhodococcus recombinant strain for degradation of products from anaerobic dechlorination of PCBs. Environmental Science & Technology, 35(4), 663–668. https://doi.org/10.1021/es001308t
  • Roszak, M., Jabłońska, J., Stachurska, X., Dubrowska, K., Kajdanowicz, J., Gołębiewska, M., Kiepas-Kokot, A., Osińska, B., Augustyniak, A., & Karakulska, J. (2021). Development of an autochthonous microbial consortium for enhanced bioremediation of PAH-contaminated soil. International Journal of Molecular Sciences, 22(24), 13469. https://doi.org/10.3390/ijms222413469
  • Ruiz-Aguilar, G. M. L., Fernandez-Sanchez, J. M., Rodriguez-Vazquez, R., & Poggi-Varaldo, H. (2002). Degradation by white-rot fungi of high concentrations of PCB extracted from a contaminated soil. Advances in Environmental Research, 6(4), 559–568. https://doi.org/10.1016/S1093-0191(01)00102-2
  • Rysavy, J. P., Yan, T., & Novak, P. J. (2005). Enrichment of anaerobic polychlorinated biphenyl dechlorinators from sediment with iron as a hydrogen source. Water Research, 39(4), 569–578. https://doi.org/10.1016/j.watres.2004.11.009
  • Saavedra, J. M., Acevedo, F., González, M., & Seeger, M. (2010). Mineralization of PCBs by the genetically modified strain Cupriavidus necator JMS34 and its application for bioremediation of PCBs in soil. Applied Microbiology and Biotechnology, 87(4), 1543–1554. https://doi.org/10.1007/s00253-010-2575-6
  • Sage, L., Perigon, S., Faure, M., Gaignaire, C., Abdelghafour, M., Mehu, J., Geremia, R. A., & Mouhamadou, B. (2014). Autochthonous ascomycetes in depollution of polychlorinated biphenyls contaminated soil and sediment. Chemosphere, 110, 62–69. https://doi.org/10.1016/j.chemosphere.2014.03.013
  • Salam, L. B., & Idris, H. (2019). Consequences of crude oil contamination on the structure and function of autochthonous microbial community of a tropical agricultural soil. Environmental Sustainability, 2(2), 167–187. https://doi.org/10.1007/s42398-019-00058-0
  • Schneider, T., Keiblinger, K. M., Schmid, E., Sterflinger-Gleixner, K., Ellersdorfer, G., Roschitzki, B., Richter, A., Eberl, L., Zechmeister-Boltenstern, S., & Riedel, K. (2012). Who is who in litter decomposition? Metaproteomics reveals major microbial players and their biogeochemical functions. The ISME Journal, 6(9), 1749–1762. https://doi.org/10.1038/ismej.2012.11
  • Sharma, J. K., Gautam, R. K., Nanekar, S. V., Weber, R., Singh, B. K., Singh, S. K., & Juwarkar, A. A. (2018). Advances and perspective in bioremediation of polychlorinated biphenyl-contaminated soils. Environmental Science and Pollution Research International, 25(17), 16355–16375. https://doi.org/10.1007/s11356-017-8995-4
  • Sokol, R. C., Bethoney, C. M., & Rhee, G. Y. (1994). Effect of hydrogen on the pathway and products of PCB dechlorination. Chemosphere, 29(8), 1735–1742. https://doi.org/10.1016/0045-6535(94)90319-0
  • Sredlova, K., Skrob, Z., Filipova, A., Masin, P., Holecova, J., & Cajthaml, T. (2020). Biodegradation of PCBs in contaminated water using spent oyster mushroom substrate and a trickle-bed bioreactor. Water Research, 170, 115274. https://doi.org/10.1016/j.watres.2019.115274
  • Sredlova, K., Sirova, K., Stella, T., & Cajthaml, T. (2021). Degradation products of polychlorinated biphenyls and their in vitro transformation by ligninolytic fungi. Toxics, 9(4), 81. https://doi.org/10.3390/toxics9040081
  • Steen, A. D., Crits-Christoph, A., Carini, P., DeAngelis, K. M., Fierer, N., Lloyd, K. G., & Thrash, J. C. (2019). High proportions of bacteria and archaea across most biomes remain uncultured. The ISME Journal, 13(12), 3126–3130. https://doi.org/10.1038/s41396-019-0484-y
  • Steliga, T., Wojtowicz, K., Kapusta, P., & Brzeszcz, J. (2020). Assessment of biodegradation efficiency of polychlorinated biphenyls (PCBs) and petroleum hydrocarbons (TPH) in soil using three individual bacterial strains and their mixed culture. Molecules (Basel, Switzerland), 25(3), 709. https://doi.org/10.3390/molecules25030709
  • Stella, T., Covino, S., Čvančarová, M., Filipová, A., Petruccioli, M., D’Annibale, A., & Cajthaml, T. (2017). Bioremediation of long-term PCB-contaminated soil by white-rot fungi. Journal of Hazardous Materials, 324(Pt B), 701–710. https://doi.org/10.1016/j.jhazmat.2016.11.044
  • Su, X., Shen, H., Yao, X., Ding, L., Yu, C., & Shen, C. (2013). A novel approach to stimulate the biphenyl-degrading potential of bacterial community from PCBs-contaminated soil of e-waste recycling sites. Bioresource Technology, 146, 27–34. https://doi.org/10.1016/j.biortech.2013.07.028
  • Su, X., Zhang, S., Mei, R., Zhang, Y., Hashmi, M. Z., Liu, J., Lin, H., Ding, L., & Sun, F. (2018). Resuscitation of viable but non-culturable bacteria to enhance the cellulose-degrading capability of bacterial community in composting. Microbial Biotechnology, 11(3), 527–536. https://doi.org/10.1111/1751-7915.13256
  • Su, X., Li, S., Xie, M., Tao, L., Zhou, Y., Xiao, Y., Lin, H., Chen, J., & Sun, F. (2021). Enhancement of polychlorinated biphenyl biodegradation by resuscitation promoting factor (Rpf) and Rpf-responsive bacterial community. Chemosphere, 263, 128283. https://doi.org/10.1016/j.chemosphere.2020.128283
  • Su, X., Xie, M., Han, Z., Xiao, Y., Wang, R., Shen, C., Hashmi, M. Z., & Sun, F. (2023). Resuscitation-promoting factor accelerates enrichment of highly active tetrachloroethene/polychlorinated biphenyl-dechlorinating cultures. Applied and Environmental Microbiology, 89(1), e01951–01922. https://doi.org/10.1128/aem.01951-22
  • Suenaga, H., Nonaka, K., Fujihara, H., Goto, M., & Furukawa, K. (2010). Hybrid pseudomonads engineered by two-step homologous recombination acquire novel degradation abilities toward aromatics and polychlorinated biphenyls. Applied Microbiology and Biotechnology, 88(4), 915–923. https://doi.org/10.1007/s00253-010-2840-8
  • Sul, W. J., Park, J., Quensen, J. F., 3rd, Rodrigues, J. L., Seliger, L., Tsoi, T. V., Zylstra, G. J., & Tiedje, J. M. (2009). DNA-stable isotope probing integrated with metagenomics for retrieval of biphenyl dioxygenase genes from polychlorinated biphenyl-contaminated river sediment. Applied and Environmental Microbiology, 75(17), 5501–5506. https://doi.org/10.1128/AEM.00121-09
  • Sun, J., Pan, L., & Zhu, L. (2018). Formation of hydroxylated and methoxylated polychlorinated biphenyls by Bacillus subtilis: New insights into microbial metabolism. The Science of the Total Environment, 613-614, 54–61. https://doi.org/10.1016/j.scitotenv.2017.09.063
  • Suzuki, M. T., & Giovannoni, S. J. (1996). Bias caused by template annealing in the amplification of mixtures of 16S rRNA genes by PCR. Applied and Environmental Microbiology, 62(2), 625–630. https://doi.org/10.1128/aem.62.2.625-630.1996
  • Terzaghi, E., Vergani, L., Mapelli, F., Borin, S., Raspa, G., Zanardini, E., Morosini, C., Anelli, S., Nastasio, P., Sale, V. M., Armiraglio, S., & Di Guardo, A. (2020). New data set of polychlorinated dibenzo-p-dioxin and dibenzofuran half-lives: Natural attenuation and rhizoremediation using several common plant species in a weathered contaminated soil. Environmental Science & Technology, 54(16), 10000–10011. https://doi.org/10.1021/acs.est.0c01857
  • Terzaghi, E., Zanardini, E., Morosini, C., Raspa, G., Borin, S., Mapelli, F., Vergani, L., & Di Guardo, A. (2018). Rhizoremediation half-lives of PCBs: Role of congener composition, organic carbon forms, bioavailability, microbial activity, plant species and soil conditions, on the prediction of fate and persistence in soil. The Science of the Total Environment, 612, 544–560. https://doi.org/10.1016/j.scitotenv.2017.08.189
  • Tillmann, S., Strompl, C., Timmis, K. N., & Abraham, W. R. (2005). Stable isotope probing reveals the dominant role of Burkholderia species in aerobic degradation of PCBs. FEMS Microbiology Ecology, 52(2), 207–217. https://doi.org/10.1016/j.femsec.2004.11.014
  • Tussipkan, D., & Manabayeva, S. A. (2022). Alfalfa (Medicago Sativa L.): Genotypic diversity and transgenic alfalfa for phytoremediation. Frontiers in Environmental Science, 10, 828257. https://doi.org/10.3389/fenvs.2022.828257
  • Valizadeh, S., Lee, S. S., Baek, K., Choi, Y. J., Jeon, B.-H., Rhee, G. H., Lin, K.-Y. A., & Park, Y.-K. (2021). Bioremediation strategies with biochar for polychlorinated biphenyls (PCBs)-contaminated soils: A review. Environmental Research, 200, 111757. https://doi.org/10.1016/j.envres.2021.111757
  • Vergani, L., Mapelli, F., Suman, J., Cajthaml, T., Uhlik, O., & Borin, S. (2019). Novel PCB-degrading Rhodococcus strains able to promote plant growth for assisted rhizoremediation of historically polluted soils. PLoS One, 14(8), e0221253. https://doi.org/10.1371/journal.pone.0221253
  • Vergani, L., Mapelli, F., Zanardini, E., Terzaghi, E., Di Guardo, A., Morosini, C., Raspa, G., & Borin, S. (2017). Phyto-rhizoremediation of polychlorinated biphenyl contaminated soils: An outlook on plant-microbe beneficial interactions. The Science of the Total Environment, 575, 1395–1406. https://doi.org/10.1016/j.scitotenv.2016.09.218
  • Viisimaa, M., Karpenko, O., Novikov, V., Trapido, M., & Goi, A. (2013). Influence of biosurfactant on combined chemical-biological treatment of PCB-contaminated soil. Chemical Engineering Journal, 220, 352–359. https://doi.org/10.1016/j.cej.2013.01.041
  • Villacieros, M., Whelan, C., Mackova, M., Molgaard, J., Sánchez-Contreras, M., Lloret, J., Aguirre de Cárcer, D., Oruezábal Roke, I., Bolaños, L., Macek, T., Karlson, U., Dowling David, N., Martín, M., & Rivilla, R. (2005). Polychlorinated biphenyl rhizoremediation by Pseudomonas fluorescens f113 derivatives, using a sinorhizobium meliloti nod system to drive bph gene expression. Applied and Environmental Microbiology, 71(5), 2687–2694. https://doi.org/10.1128/AEM.71.5.2687-2694.2005
  • Wan, H., Yi, X., Liu, X., Feng, C., Dang, Z., & Wei, C. (2018). Time-dependent bacterial community and electrochemical characterizations of cathodic biofilms in the surfactant-amended sediment-based bioelectrochemical reactor with enhanced 2,3,4,5-tetrachlorobiphenyl dechlorination. Environmental Pollution (Barking, Essex: 1987), 236, 343–354. https://doi.org/10.1016/j.envpol.2018.01.048
  • Wang, S., Chng, K. R., Wilm, A., Zhao, S., Yang, K.-L., Nagarajan, N., & He, J. (2014). Genomic characterization of three unique Dehalococcoides that respire on persistent polychlorinated biphenyls. Proceedings of the National Academy of Sciences of the United States of America, 111(33), 12103–12108. https://doi.org/10.1073/pnas.1404845111
  • Wang, S., & He, J. (2013). Phylogenetically distinct bacteria involve extensive dechlorination of aroclor 1260 in sediment-free cultures. PLoS One, 8(3), e59178. https://doi.org/10.1371/journal.pone.0059178
  • Wang, S., Li, J., Jiang, L., Wang, S., Zhao, X., Dai, Y., Luo, C., & Zhang, G. (2022). The influence of anaerobic dechlorination on the aerobic degradation of PCBs in e-waste-contaminated soils in an anaerobic-aerobic two-stage treatment. The Science of the Total Environment, 844, 157195. https://doi.org/10.1016/j.scitotenv.2022.157195
  • Wiegel, J., & Wu, Q. (2000). Microbial reductive dehalogenation of polychlorinated biphenyls. FEMS Microbiology Ecology, 32(1), 1–15. https://doi.org/10.1111/j.1574-6941.2000.tb00693.x
  • Winchell, L. J., & Novak, P. J. (2008). Enhancing polychlorinated biphenyl dechlorination in fresh water sediment with biostimulation and bioaugmentation. Chemosphere, 71(1), 176–182. https://doi.org/10.1016/j.chemosphere.2007.10.021
  • Wójcik, A., Perczyk, P., Wydro, P., & Broniatowski, M. (2020). Dichlorobiphenyls and chlorinated benzoic acids – Emergent soil pollutants in model bacterial membranes. Langmuir monolayer and Grazing Incidence X-ray Diffraction studies. Journal of Molecular Liquids, 307, 112997. https://doi.org/10.1016/j.molliq.2020.112997
  • Wu, Q., Sowers, K. R., & May, H. D. (2000). Establishment of a polychlorinated biphenyl-dechlorinating microbial consortium, specific for doubly flanked chlorines, in a defined, sediment-free medium. Applied and Environmental Microbiology, 66(1), 49–53. https://doi.org/10.1128/AEM.66.1.49-53.2000
  • Wu, Y., Jing, X., Gao, C., Huang, Q., & Cai, P. (2018). Recent advances in microbial electrochemical system for soil bioremediation. Chemosphere, 211, 156–163. https://doi.org/10.1016/j.chemosphere.2018.07.089
  • Xing, Z. Y., Hu, T., Xiang, Y., Qi, P., & Huang, X. (2020). Degradation mechanism of 4-chlorobiphenyl by consortium of Pseudomonas sp. strain CB-3 and Comamonas sp. strain CD-2. Current Microbiology, 77(1), 15–23. https://doi.org/10.1007/s00284-019-01791-9
  • Xu, L., Liu, S., Tang, Y., Han, X., Wang, Y., Fu, D., Qin, Q., & Xu, Y. (2022). Long-term dechlorination of polychlorinated biphenyls (PCBs) in Taihu Lake sediment microcosms: Identification of new pathways, PCB-driven shifts of microbial communities, and insights into dechlorination potential. Environmental Science & Technology, 56(2), 938–950. https://doi.org/10.1021/acs.est.1c06057
  • Xu, L., Xu, J.-J., Jia, L.-Y., Liu, W.-B., & Jian, X. (2011). Congener selectivity during polychlorinated biphenyls degradation by Enterobacter sp LY402. Current Microbiology, 62(3), 784–789. https://doi.org/10.1007/s00284-010-9792-1
  • Yadav, Sandeep, Singh Raman, Anirudh Pratap, Meena, Harshvardhan, Goswami, Abhay Giri, Kumar, Vinod, Jain, Pallavi, Kumar, Gyanendra, Sagar, Mansi, Rana, Devendra Kumar, Bahadur, Indra, Singh, Prashant, Bhawna, (2022). An update on graphene oxide: Applications and toxicity. ACS Omega, 407, 35387–35445. https://doi.org/10.1021/acsomega.2c03171
  • Yan, T., LaPara, T. M., & Novak, P. J. (2006). The reductive dechlorination of 2,3,4,5-tetrachlorobiphenyl in three different sediment cultures: Evidence for the involvement of phylogenetically similar Dehalococcoides-like bacterial populations. FEMS Microbiology Ecology, 55(2), 248–261. https://doi.org/10.1111/j.1574-6941.2005.00022.x
  • Yang, Y., Zhang, Z.-W., Liu, R.-X., Ju, H.-Y., Bian, X.-K., Zhang, W.-Z., Zhang, C.-B., Yang, T., Guo, B., Xiao, C.-L., Bai, H., & Lu, W.-Y. (2021). Research progress in bioremediation of petroleum pollution. Environmental Science and Pollution Research International, 28(34), 46877–46893. https://doi.org/10.1007/s11356-021-15310-6
  • Yoshida, S., Ogawa, N., Fujii, T., & Tsushima, S. (2009). Enhanced biofilm formation and 3-chlorobenzoate degrading activity by the bacterial consortium of Burkholderia sp. NK8 and Pseudomonas aeruginosa PAO1. Journal of Applied Microbiology, 106(3), 790–800. https://doi.org/10.1111/j.1365-2672.2008.04027.x
  • Yu, H., Wan, H., Feng, C., Yi, X., Liu, X., Ren, Y., & Wei, C. (2017). Microbial polychlorinated biphenyl dechlorination in sediments by electrical stimulation: The effect of adding acetate and nonionic surfactant. The Science of the Total Environment, 580, 1371–1380. https://doi.org/10.1016/j.scitotenv.2016.12.102
  • Yuan, M., Xin, J., Wang, X., Zhao, F., Wang, L., & Liu, M. (2022). Coupling microscale zero-valent iron and autotrophic hydrogen-bacteria provides a sustainable remediation solution for trichloroethylene-contaminated groundwater: Mechanisms, regulation, and engineering implications. Water Research, 216, 118286. https://doi.org/10.1016/j.watres.2022.118286
  • Zanaroli, G., Balloi, A., Negroni, A., Borruso, L., Daffonchio, D., & Fava, F. (2012). A Chloroflexi bacterium dechlorinates polychlorinated biphenyls in marine sediments under in situ-like biogeochemical conditions. Journal of Hazardous Materials, 209-210, 449–457. https://doi.org/10.1016/j.jhazmat.2012.01.042
  • Zanaroli, G., Balloi, A., Negroni, A., Daffonchio, D., Young, L. Y., & Fava, F. (2010). Characterization of the microbial community from the marine sediment of the Venice lagoon capable of reductive dechlorination of coplanar polychlorinated biphenyls (PCBs). Journal of Hazardous Materials, 178(1-3), 417–426. https://doi.org/10.1016/j.jhazmat.2010.01.097
  • Zenteno-Rojas, A., Martínez-Romero, E., Castañeda-Valbuena, D., Rincón-Molina, C. I., Ruíz-Valdiviezo, V. M., Meza-Gordillo, R., Villalobos-Maldonado, J. J., Vences-Guzmán, M., & Rincón-Rosales, R. (2020). Structure and diversity of native bacterial communities in soils contaminated with polychlorinated biphenyls. AMB Express, 10(1), 124. https://doi.org/10.1186/s13568-020-01058-8
  • Zhang, T., Gannon, S. M., Nevin, K. P., Franks, A. E., & Lovley, D. R. (2010). Stimulating the anaerobic degradation of aromatic hydrocarbons in contaminated sediments by providing an electrode as the electron acceptor. Environmental Microbiology, 12(4), 1011–1020. https://doi.org/10.1111/j.1462-2920.2009.02145.x
  • Zhou, H. Y., Yin, H., Guo, Z. Y., Zhu, M. H., Qi, X., & Dang, Z. (2023a). Methanol promotes the biodegradation of 2,2’,3,4,4’,5,5’-heptachlorobiphenyl (PCB180) by the microbial consortium QY2: Metabolic pathways, toxicity evaluation and community response. Chemosphere, 322, 138206. https://doi.org/10.1016/j.chemosphere.2023.138206
  • Zhou, Q., & Hu, X. (2017). Systemic stress and recovery patterns of rice roots in response to graphene oxide nanosheets. Environmental Science & Technology, 51(4), 2022–2030. https://doi.org/10.1021/acs.est.6b05591
  • Zhou, Q., Song, C., Wang, P., Zhao, Z., Li, Y., & Zhan, S. (2023b). Generating dual active species by triple-atom-sites through peroxymonosulfate activation for treating micropollutants in complex water. Proceedings of the National Academy of Sciences of the United States of America, 120(13), e2300085120. https://doi.org/10.1073/pnas.2300085120
  • Zhou, X., Zhang, S., Wang, R., An, Z., Sun, F., Shen, C., Lin, H., & Su, X. (2023c). A novel strategy for enhancing bioremediation of polychlorinated biphenyl-contaminated soil with resuscitation promoting factor and resuscitated strain. Journal of Hazardous Materials, 447, 130781. https://doi.org/10.1016/j.jhazmat.2023.130781

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.