191
Views
4
CrossRef citations to date
0
Altmetric
Review Articles

Combining phytoremediation with carbon-based materials under carbon neutral background: Is it a close step to sustainable restoration?

, ORCID Icon, , , , , , , & show all
Pages 1070-1091 | Published online: 18 Dec 2023

References

  • Abideen, Z., Koyro, H.-W., Huchzermeyer, B., Ansari, R., Zulfiqar, F., & Gul, B. (2020). Ameliorating effects of biochar on photosynthetic efficiency and antioxidant defence of Phragmites karka under drought stress. Plant Biology (Stuttgart, Germany), 22(2), 259–266. https://doi.org/10.1111/plb.13054
  • Adeel, M., Farooq, T., White, J. C., Hao, Y., He, Z., & Rui, Y. (2020). Carbon-based nanomaterials suppress Tobacco Mosaic Virus (TMV) infection and induce resistance in Nicotiana benthamiana. Journal of Hazardous Materials, 404(Pt A), 124167. https://doi.org/10.1016/j.jhazmat.2020.12416
  • Ahmad, S. Z. N., Wan Salleh, W. N., Ismail, A. F., Yusof, N., Mohd Yusop, M. Z., & Aziz, F. (2020). Adsorptive removal of heavy metal ions using graphene-based nanomaterials: Toxicity, roles of functional groups and mechanisms. Chemosphere, 248, 126008. https://doi.org/10.1016/j.chemosphere.2020.126008
  • Ali, S., Rizwan, M., Noureen, S., Anwar, S., Ali, B., Naveed, M., Abd Allah, E. F., Alqarawi, A. A., & Ahmad, P. (2019). Combined use of biochar and zinc oxide nanoparticle foliar spray improved the plant growth and decreased the cadmium accumulation in rice (Oryza sativa L.) plant. Environmental Science and Pollution Research International, 26(11), 11288–11299. https://doi.org/10.1007/s11356-019-04554-y
  • Alp, F. N., Arikan, B., Ozfidan-Konakci, C., Balci, M., Yildiztugay, E., & Cavusoglu, H. (2022). Multiwalled carbon nanotubes alter the PSII photochemistry, photosystem-related gene expressions, and chloroplastic antioxidant system in Zea mays under copper toxicity. Journal of Agricultural and Food Chemistry, 70(36), 11154–11168. https://doi.org/10.1021/acs.jafc.2c02608
  • Amtmann, A., & Blatt, M. R. (2009). Regulation of macronutrient transport. The New Phytologist, 181(1), 35–52. https://doi.org/10.1111/j.1469-8137.2008.02666.x
  • Ankit, A., Kamali, S., & Singh, A. (2022). Genomic & structural diversity and functional role of potassium (K+) transport proteins in plants. International Journal of Biological Macromolecules, 208, 844–857. https://doi.org/10.1016/j.ijbiomac.2022.03.179
  • Arikan, B., Alp, F. N., Ozfidan-Konakci, C., Balci, M., Elbasan, F., Yildiztugay, E., & Cavusoglu, H. (2022). Fe2O3-modified graphene oxide mitigates nanoplastic toxicity via regulating gas exchange, photosynthesis, and antioxidant system in Triticum aestivum. Chemosphere, 307(Pt 4), 136048. https://doi.org/10.1016/j.chemosphere.2022.136048
  • Azzi, E. S., Karltun, E., & Sundberg, C. (2021). Assessing the diverse environmental effects of biochar systems: An evaluation framework. Journal of Environmental Management, 286, 112154. https://doi.org/10.1016/j.jenvman.2021.112154
  • Cardona, T., Shao, S., & Nixon, P. J. (2018). Enhancing photosynthesis in plants: The light reactions. Essays in Biochemistry, 62(1), 85–94. https://doi.org/10.1042/EBC20170015
  • Chagas, J. K. M., Figueiredo, C. C., de., & Ramos, M. L. G. (2022). Biochar increases soil carbon pools: Evidence from a global meta-analysis. Journal of Environmental Management, 305, 114403. https://doi.org/10.1016/j.jenvman.2021.114403
  • Chen, Q., Cao, X., Liu, B., Nie, X., Liang, T., Suhr, J., & Ci, L. (2021). Effects of functional carbon nanodots on water hyacinth response to Cd/Pb stress: Implication for phytoremediation. Journal of Environmental Management, 299, 113624. https://doi.org/10.1016/j.jenvman.2021.113624
  • Chen, N., Huang, Y., Hou, X., Ai, Z., & Zhang, L. (2017). Photochemistry of hydrochar: Reactive oxygen species generation and sulfadimidine degradation. Environmental Science & Technology, 51(19), 11278–11287. https://doi.org/10.1021/acs.est.7b02740
  • Chen, Z., Niu, J., Guo, Z., Sui, X., Xu, N., Kareem, H. A., Hassan, M. U., Yan, M., Zhang, Q., Cui, J., Kang, J., Wang, Z., Mi, F., Karagić, Đ., & Wang, Q. (2021). Graphene enhances photosynthesis and the antioxidative defense system and alleviates salinity and alkalinity stresses in alfalfa (Medicago sativa L.) by regulating gene expression. Environmental Science: Nano, 8(9), 2731–2748. https://doi.org/10.1039/D1EN00257K
  • Chen, Z., & Wang, Q. (2021). Graphene ameliorates saline-alkaline stress-induced damage and improves growth and tolerance in alfalfa (Medicago sativa L.). Plant Physiology and Biochemistry: PPB, 163, 128–138. https://doi.org/10.1016/j.plaphy.2021.03.039
  • Chen, X., Wang, J., Hayat, K., Zhang, D., & Zhou, P. (2021). Small structures with big impact: Multi-walled carbon nanotubes enhanced remediation efficiency in hyperaccumulator Solanum nigrum L. under cadmium and arsenic stress. Chemosphere, 276, 130130. https://doi.org/10.1016/j.chemosphere.2021.130130
  • Chen, X., Wang, J., Wang, R., Zhang, D., Chu, S., Yang, X., Hayat, K., Fan, Z., Cao, X., Ok, Y. S., & Zhou, P. (2022a). Insights into growth-promoting effect of nanomaterials: Using transcriptomics and metabolomics to reveal the molecular mechanisms of MWCNTs in enhancing hyperaccumulator under heavy metal(loid)s stress. Journal of Hazardous Materials, 439, 129640. https://doi.org/10.1016/j.jhazmat.2022.129640
  • Chen, X., Wang, J., You, Y., Wang, R., Chu, S., Chi, Y., Hayat, K., Hui, N., Liu, X., Zhang, D., & Zhou, P. (2022b). When nanoparticle and microbes meet: The effect of multi-walled carbon nanotubes on microbial community and nutrient cycling in hyperaccumulator system. Journal of Hazardous Materials, 423(Pt A), 126947. https://doi.org/10.1016/j.jhazmat.2021.126947
  • Chen, M., Zhou, S., Zhu, Y., Sun, Y., Zeng, G., Yang, C., Xu, P., Yan, M., Liu, Z., & Zhang, W. (2018). Toxicity of carbon nanomaterials to plants, animals and microbes: Recent progress from 2015-present. Chemosphere, 206, 255–264. https://doi.org/10.1016/j.chemosphere.2018.05.020
  • Dai, Y., Liu, R., Zhou, Y., Li, N., Hou, L., Ma, Q., & Gao, B. (2020). Fire phoenix facilitates phytoremediation of PAH-Cd co-contaminated soil through promotion of beneficial rhizosphere bacterial communities. Environment International, 136, 105421. https://doi.org/10.1016/j.envint.2019.105421
  • Ding, X., Li, G., Zhao, X., Lin, Q., & Wang, X. (2023). Biochar application significantly increases soil organic carbon under conservation tillage: An 11-year field experiment. Biochar, 5(1), 28. https://doi.org/10.1007/s42773-023-00226-w
  • El-Banna, M. F., Mosa, A., Gao, B., Yin, X., Wang, H., & Ahmad, Z. (2019). Scavenging effect of oxidized biochar against the phytotoxicity of lead ions on hydroponically grown chicory: An anatomical and ultrastructural investigation. Ecotoxicology and Environmental Safety, 170, 363–374. https://doi.org/10.1016/j.ecoenv.2018.12.011
  • Fan, X., Xu, J., Lavoie, M., Peijnenburg, W. J. G. M., Zhu, Y., Lu, T., Fu, Z., Zhu, T., & Qian, H. (2018). Multiwall carbon nanotubes modulate paraquat toxicity in Arabidopsis thaliana. Environmental Pollution (Barking, Essex: 1987), 233, 633–641. https://doi.org/10.1016/j.envpol.2017.10.1160269-7491
  • Fang, G., Liu, C., Gao, J., Dionysiou, D. D., & Zhou, D. (2015). Manipulation of persistent free radicals in biochar to activate persulfate for contaminant degradation. Environmental Science & Technology, 49(9), 5645–5653. https://doi.org/10.1021/es5061512
  • Friedlingstein, P., O'Sullivan, M., Jones, M. W., Andrew, R. M., Gregor, L., Hauck, J., Le Quéré, C., Luijkx, I. T., Olsen, A., Peters, G. P., Peters, W., Pongratz, J., Schwingshackl, C., Sitch, S., Canadell, J. G., Ciais, P., Jackson, R. B., Alin, S. R., Alkama, R., … Zheng, B. (2022). Global carbon budget 2022. Earth System Science Data, 14(11), 4811–4900. https://doi.org/10.5194/essd-14-4811-2022
  • Fu, T., Zhang, B., Gao, X., Cui, S., Guan, C.-Y., Zhang, Y., Zhang, B., & Peng, Y. (2023). Recent progresses, challenges, and opportunities of carbon-based materials applied in heavy metal polluted soil remediation. The Science of the Total Environment, 856(Pt 1), 158810. https://doi.org/10.1016/j.scitotenv.2022.158810
  • Gao, M., Chang, X., Yang, Y., & Song, Z. (2020). Foliar graphene oxide treatment increases photosynthetic capacity and reduces oxidative stress in cadmium-stressed lettuce. Plant Physiology and Biochemistry: PPB, 154, 287–294. https://doi.org/10.1016/j.plaphy.2020.06.021
  • Gao, L.-Y., Deng, J.-H., Huang, G.-F., Li, K., Cai, K.-Z., Liu, Y., & Huang, F. (2019). Relative distribution of Cd2+ adsorption mechanisms on biochars derived from rice straw and sewage sludge. Bioresource Technology, 272, 114–122. https://doi.org/10.1016/j.biortech.2018.09.138
  • Ghassemi-Golezani, K., & Farhangi-Abriz, S. (2019). Biochar alleviates fluoride toxicity and oxidative stress in safflower (Carthamus tinctorius L.) seedlings. Chemosphere, 223, 406–415. https://doi.org/10.1016/j.chemosphere.2019.02.087
  • Godlewska, P., Jośko, I., & Oleszczuk, P. (2022). Ecotoxicity of sewage sludge- or sewage sludge/willow-derived biochar-amended soil. Environmental Pollution (Barking, Essex: 1987), 305, 119235. https://doi.org/10.1016/j.envpol.2022.119235
  • Gohari, G., Safai, F., Panahirad, S., Akbari, A., Rasouli, F., Dadpour, M. R., & Fotopoulos, V. (2020). Modified multiwall carbon nanotubes display either phytotoxic or growth promoting and stress protecting activity in Ocimum basilicum L. in a concentration-dependent manner. Chemosphere, 249, 126171. https://doi.org/10.1016/j.chemosphere.2020.126171
  • Gong, Y., & Dong, Z. (2021). Transfer, transportation, and accumulation of cerium-doped carbon quantum dots: Promoting growth and development in wheat. Ecotoxicology and Environmental Safety, 226, 112852. https://doi.org/10.1016/j.ecoenv.2021.112852
  • Gong, X., Huang, D., Liu, Y., Zeng, G., Chen, S., Wang, R., Xu, P., Cheng, M., Zhang, C., & Xue, W. (2019a). Biochar facilitated the phytoremediation of cadmium contaminated sediments: Metal behavior, plant toxicity, and microbial activity. The Science of the Total Environment, 666, 1126–1133. https://doi.org/10.1016/j.scitotenv.2019.02.215
  • Gong, X., Huang, D., Liu, Y., Zeng, G., Wang, R., Xu, P., Zhang, C., Cheng, M., Xue, W., & Chen, S. (2019b). Roles of multiwall carbon nanotubes in phytoremediation: Cadmium uptake and oxidative burst in Boehmeria nivea (L.) Gaudich. Environmental Science: Nano, 6(3), 851–862. https://doi.org/10.1039/C8EN00723C
  • Gong, X., Huang, D., Liu, Y., Zou, D., Hu, X., Zhou, L., Wu, Z., Yang, Y., & Xiao, Z. (2021). Nanoscale zerovalent iron, carbon nanotubes and biochar facilitated the phytoremediation of cadmium contaminated sediments by changing cadmium fractions, sediments properties and bacterial community structure. Ecotoxicology and Environmental Safety, 208, 111510. https://doi.org/10.1016/j.ecoenv.2020.111510
  • Gong, Y., & Zhao, J. (2018). Small carbon quantum dots, large photosynthesis enhancement. Journal of Agricultural and Food Chemistry, 66(35), 9159–9161. https://doi.org/10.1021/acs.jafc.8b01788
  • Guo, B., Liu, G., Wei, H., Qiu, J., Zhuang, J., Zhang, X., Zheng, M., Li, W., Zhang, H., Hu, C., Lei, B., & Liu, Y. (2022). The role of fluorescent carbon dots in crops: Mechanism and applications. SmartMat, 3(2), 208–225. https://doi.org/10.1002/smm2.1111
  • Haines, A., Amann, M., Borgford-Parnell, N., Leonard, S., Kuylenstierna, J., & Shindell, D. (2017). Short-lived climate pollutant mitigation and the sustainable development goals. Nature Climate Change, 7(12), 863–869. https://doi.org/10.1038/s41558-017-0012-x
  • Hakeem, K. R., Alharby, H. F., Bamagoos, A. A. M., & Pirzadah, T. B. (2022). Biochar promotes arsenic (As) immobilization in contaminated soils and alleviates the As-toxicity in soybean (Glycine max (L.) Merr.). Chemosphere, 292, 133407. https://doi.org/10.1016/j.chemosphere.2021.133407
  • Han, L., Zhang, B., Chen, L., Feng, Y., Yang, Y., & Sun, K. (2021). Impact of biochar amendment on soil aggregation varied with incubation duration and biochar pyrolysis temperature. Biochar, 3(3), 339–347. https://doi.org/10.1007/s42773-021-00097-z
  • He, Y., Cheng, W., Zhou, L., Shao, J., Liu, H., Zhou, H., Zhu, K., & Zhou, X. (2020). Soil DOC release and aggregate disruption mediate rhizosphere priming effect on soil C decomposition. Soil Biology and Biochemistry, 144, 107787. https://doi.org/10.1016/j.soilbio.2020.107787
  • Hou, D., O’Connor, D., Igalavithana, A. D., Alessi, D. S., Luo, J., Tsang, D. C. W., Sparks, D. L., Yamauchi, Y., Rinklebe, J., & Ok, Y. S. (2020). Metal contamination and bioremediation of agricultural soils for food safety and sustainability. Nature Reviews Earth & Environment, 1(7), 366–381. https://doi.org/10.1038/s43017-020-0061-y
  • Huang, D., Gao, L., Cheng, M., Yan, M., Zhang, G., Chen, S., Du, L., Wang, G., Li, R., Tao, J., Zhou, W., & Yin, L. (2022a). Carbon and N conservation during composting: A review. The Science of the Total Environment, 840, 156355. https://doi.org/10.1016/j.scitotenv.2022.156355
  • Huang, D., Xiao, R., Du, L., Zhang, G., Yin, L., Deng, R., & Wang, G. (2021). Phytoremediation of poly- and perfluoroalkyl substances: A review on aquatic plants, influencing factors, and phytotoxicity. Journal of Hazardous Materials, 418, 126314. https://doi.org/10.1016/j.jhazmat.2021.126314
  • Huang, X., Yang, X., Lin, J., Franks, A. E., Cheng, J., Zhu, Y., Shi, J., Xu, J., Yuan, M., Fu, X., & He, Y. (2022). Biochar alleviated the toxicity of atrazine to soybeans, as revealed by soil microbial community and the assembly process. The Science of the Total Environment, 834, 155261. https://doi.org/10.1016/j.scitotenv.2022.155261
  • Huang, D., Zhou, W., Chen, S., Tao, J., Li, R., Yin, L., Wang, X., & Chen, H. (2022b). Presence of polystyrene microplastics in Cd contaminated water promotes Cd removal by nano zero-valent iron and ryegrass (Lolium Perenne L.). Chemosphere, 303(Pt 1), 134729. https://doi.org/10.1016/j.chemosphere.2022.134729
  • Hu, L., Robert, C. A. M., Cadot, S., Zhang, X., Ye, M., Li, B., Manzo, D., Chervet, N., Steinger, T., van der Heijden, M. G. A., Schlaeppi, K., & Erb, M. (2018). Root exudate metabolites drive plant-soil feedbacks on growth and defense by shaping the rhizosphere microbiota. Nature Communications, 9(1), 2738. https://doi.org/10.1038/s41467-018-05122-7
  • Hu, Y., Zhang, P., Zhang, X., Liu, Y., Feng, S., Guo, D., Nadezhda, T., Song, Z., & Dang, X. (2021). Multi-wall carbon nanotubes promote the growth of maize (Zea mays) by regulating carbon and nitrogen metabolism in leaves. Journal of Agricultural and Food Chemistry, 69(17), 4981–4991. https://doi.org/10.1021/acs.jafc.1c00733
  • Idrees, M., Rangari, V., & Jeelani, S. (2018). Sustainable packaging waste-derived activated carbon for carbon dioxide capture. Journal of CO2 Utilization, 26, 380–387. https://doi.org/10.1016/j.jcou.2018.05.016
  • Ji, C., Yang, S., Cheng, Y., Liu, L., Wang, D., Zhu, S., E, T., & Li, Y. (2023). In situ formed CaSO4 on waste dander biochar to inhibit the mineralization of soil organic carbon. The Science of the Total Environment, 854, 158776. https://doi.org/10.1016/j.scitotenv.2022.158776
  • Jia, W., Ma, C., Yin, M., Sun, H., Zhao, Q., White, J. C., Wang, C., & Xing, B. (2020). Accumulation of phenanthrene and its metabolites in lettuce (Lactuca sativa L.) as affected by magnetic carbon nanotubes and dissolved humic acids. Environmental Science: Nano, 7(12), 3759–3772. https://doi.org/10.1039/D0EN00932F
  • Johnson, M. P. (2016). Photosynthesis. Essays in Biochemistry, 60(3), 255–273. https://doi.org/10.1042/EBC20160016
  • Kamran, M., Malik, Z., Parveen, A., Huang, L., Riaz, M., Bashir, S., Mustafa, A., Abbasi, G. H., Xue, B., & Ali, U. (2020). Ameliorative effects of biochar on rapeseed (Brassica napus L.) growth and heavy metal immobilization in soil irrigated with untreated wastewater. Journal of Plant Growth Regulation, 39(1), 266–281. https://doi.org/10.1007/s00344-019-09980-3
  • Ke, M., Ye, Y., Zhang, Z., Gillings, M., Qu, Q., Xu, N., Xu, L., Lu, T., Wang, J., & Qian, H. (2021). Synergistic effects of glyphosate and multiwall carbon nanotubes on Arabidopsis thaliana physiology and metabolism. The Science of the Total Environment, 769, 145156. https://doi.org/10.1016/j.scitotenv.2021.145156
  • Keith, A., Singh, B., & Dijkstra, F. A. (2015). Biochar reduces the rhizosphere priming effect on soil organic carbon. Soil Biology and Biochemistry, 88, 372–379. https://doi.org/10.1016/j.soilbio.2015.06.007
  • Liao, Q., Liu, H., Lu, C., Liu, J., Waigi, M. G., & Ling, W. (2021). Root exudates enhance the PAH degradation and degrading gene abundance in soils. The Science of the Total Environment, 764, 144436. https://doi.org/10.1016/j.scitotenv.2020.144436
  • Li, Y., Ge, C., Cheng, C., Wang, X., Si, D., Mu, C., Wang, M., Li, H., & Zhou, D. (2023). Nano-biochar uptake and translocation by plants: Assessing environmental fate and food chain risk. The Science of the Total Environment, 905, 167012. https://doi.org/10.1016/j.scitotenv.2023.167012
  • Li, R., Huang, D., Lei, L., Chen, S., Chen, Y., Wang, G., Du, L., Zhou, W., Tao, J., & Chen, H. (2023). Lignin and metal–organic frameworks: Mutual partners on the road to sustainability. Journal of Materials Chemistry A, 11(6), 2595–2617. https://doi.org/10.1039/D2TA09241G
  • Lin, Q., Tan, X., Almatrafi, E., Yang, Y., Wang, W., Luo, H., Qin, F., Zhou, C., Zeng, G., & Zhang, C. (2022). Effects of biochar-based materials on the bioavailability of soil organic pollutants and their biological impacts. The Science of the Total Environment, 826, 153956. https://doi.org/10.1016/j.scitotenv.2022.153956
  • Li, Y., Pan, X., Xu, X., Wu, Y., Zhuang, J., Zhang, X., Zhang, H., Lei, B., Hu, C., & Liu, Y. (2021). Carbon dots as light converter for plant photosynthesis: Augmenting light coverage and quantum yield effect. Journal of Hazardous Materials, 410, 124534. https://doi.org/10.1016/j.jhazmat.2020.124534
  • Li, X., Song, Y., Wang, F., Bian, Y., & Jiang, X. (2019). Combined effects of maize straw biochar and oxalic acid on the dissipation of polycyclic aromatic hydrocarbons and microbial community structures in soil: A mechanistic study. Journal of Hazardous Materials, 364, 325–331. https://doi.org/10.1016/j.jhazmat.2018.10.041
  • Li, F., Tang, Y., Li, C., Zheng, Y., Liu, X., Feng, C., Zhao, W., & Wang, F. (2019). Adsorption and sequestration of cadmium ions by polyptychial mesoporous biochar derived from Bacillus sp. Biomass. Environmental Science and Pollution Research International, 26(23), 23505–23523. https://doi.org/10.1007/s11356-019-05610-3
  • Liu, Z., Ling, Q., Cai, Y., Xu, L., Su, J., Yu, K., Wu, X., Xu, J., Hu, B., & Wang, X. (2022). Synthesis of carbon-based nanomaterials and their application in pollution management. Nanoscale Advances, 4(5), 1246–1262. https://doi.org/10.1039/d1na00843a
  • Liu, G., Pan, X., Ma, X., Xin, S., & Xin, Y. (2020). Effects of feedstock and inherent mineral components on oxidation resistance of biochars. The Science of the Total Environment, 726, 138672. https://doi.org/10.1016/j.scitotenv.2020.138672
  • Li, Y., Xu, X., Lei, B., Zhuang, J., Zhang, X., Hu, C., Cui, J., & Liu, Y. (2021). Magnesium-nitrogen co-doped carbon dots enhance plant growth through multifunctional regulation in photosynthesis. Chemical Engineering Journal, 422, 130114. https://doi.org/10.1016/j.cej.2021.130114
  • Lu, K., Shen, D., Dong, S., Chen, C., Lin, S., Lu, S., Xing, B., & Mao, L. (2020). Uptake of graphene enhanced the photophosphorylation performed by chloroplasts in rice plants. Nano Research, 13(12), 3198–3205. https://doi.org/10.1007/s12274-020-2862-1
  • Ma, C., Li, Q., Jia, W., Shang, H., Zhao, J., Hao, Y., Li, C., Tomko, M., Zuverza-Mena, N., Elmer, W., White, J. C., & Xing, B. (2021). Role of nanoscale hydroxyapatite in disease suppression of fusarium-infected tomato. Environmental Science & Technology, 55(20), 13465–13476. https://doi.org/10.1021/acs.est.1c00901
  • Mathew, S., Tiwari, D. K., & Tripathi, D. (2021). Interaction of carbon nanotubes with plant system: A review. Carbon Letters, 31(2), 167–176. https://doi.org/10.1007/s42823-020-00195-1
  • Matuštík, J., Pohořelý, M., & Kočí, V. (2022). Is application of biochar to soil really carbon negative? The effect of methodological decisions in life cycle assessment. The Science of the Total Environment, 807(Pt 3), 151058. https://doi.org/10.1016/j.scitotenv.2021.151058
  • Mona, S., Malyan, S. K., Saini, N., Deepak, B., Pugazhendhi, A., & Kumar, S. S. (2021). Towards sustainable agriculture with carbon sequestration, and greenhouse gas mitigation using algal biochar. Chemosphere, 275, 129856. https://doi.org/10.1016/j.chemosphere.2021.129856
  • Mony, C., Kaur, P., Rookes, J. E., Callahan, D. L., Eswaran, S. V., Yang, W., & Manna, P. K. (2022). Nanomaterials for enhancing photosynthesis: Interaction with plant photosystems and scope of nanobionics in agriculture. Environmental Science: Nano, 9(10), 3659–3683. https://doi.org/10.1039/D2EN00451H
  • Morecroft, M. D., Duffield, S., Harley, M., Pearce-Higgins, J. W., Stevens, N., Watts, O., & Whitaker, J. (2019). Measuring the success of climate change adaptation and mitigation in terrestrial ecosystems. Science (New York, N.Y.), 366(6471), eaaw9256. https://doi.org/10.1126/science.aaw9256
  • Nan, H., Yang, F., Zhao, L., Mašek, O., Cao, X., & Xiao, Z. (2019). Interaction of inherent minerals with carbon during biomass pyrolysis weakens biochar carbon sequestration potential. ACS Sustainable Chemistry & Engineering, 7(1), 1591–1599. https://doi.org/10.1021/acssuschemeng.8b05364
  • Nan, H., Yin, J., Yang, F., Luo, Y., Zhao, L., & Cao, X. (2021). Pyrolysis temperature-dependent carbon retention and stability of biochar with participation of calcium: Implications to carbon sequestration. Environmental Pollution (Barking, Essex: 1987), 287, 117566. https://doi.org/10.1016/j.envpol.2021.117566
  • Ozfidan-Konakci, C., Arikan, B., Elbasan, F., Cavusoglu, H., Yildiztugay, E., & Alp, F. N. (2022). The biphasic responses of nanomaterial fullerene on stomatal movement, water status, chlorophyll a fluorescence transient, radical scavenging system and aquaporin-related gene expression in Zea mays under cobalt stress. The Science of the Total Environment, 826, 154213. https://doi.org/10.1016/j.scitotenv.2022.154213
  • Pariyar, P., Kumari, K., Jain, M. K., & Jadhao, P. S. (2020). Evaluation of change in biochar properties derived from different feedstock and pyrolysis temperature for environmental and agricultural application. The Science of the Total Environment, 713, 136433. https://doi.org/10.1016/j.scitotenv.2019.136433
  • Pei, J., Dijkstra, F. A., Li, J., Fang, C., Su, J., Zhao, J., Nie, M., & Wu, J. (2020). Biochar-induced reductions in the rhizosphere priming effect are weaker under elevated CO2. Soil Biology and Biochemistry, 142, 107700. https://doi.org/10.1016/j.soilbio.2019.107700
  • Petersen, E., Barrios, A. C., Bjorkland, R., Goodwin, D. G., Li, J., Waissi, G., & Henry, T. (2022). Evaluation of bioaccumulation of nanoplastics, carbon nanotubes, fullerenes, and graphene family materials. Environment International, 173, 107650. https://doi.org/10.1016/j.envint.2022.107650
  • Pingkuo, L., & Yi, G. (2019). Graphene’s potential in the future industrial development of China. Resources Policy, 61, 118–127. https://doi.org/10.1016/j.resourpol.2019.02.007
  • Pompeiano, A., Huarancca Reyes, T., Moles, T. M., Guglielminetti, L., & Scartazza, A. (2019). Photosynthetic and growth responses of Arundo donax L. plantlets under different oxygen deficiency stresses and reoxygenation. Frontiers in Plant Science, 10, 408. https://doi.org/10.3389/fpls.2019.00408
  • Pračke, K., Száková, J., & Tlustoš, P. (2022). Biochar applications enhance the phytoextraction potential of Salix smithiana [Willd.] (willow) in heavily contaminated soil: Potential for a sustainable remediation method? Journal of Soils and Sediments, 22(3), 905–915. https://doi.org/10.1007/s11368-021-03104-9
  • Qin, Y., Li, G., Gao, Y., Zhang, L., Ok, Y. S., & An, T. (2018). Persistent free radicals in carbon-based materials on transformation of refractory organic contaminants (ROCs) in water: A critical review. Water Research, 137, 130–143. https://doi.org/10.1016/j.watres.2018.03.012
  • Rashid, M. S., Liu, G., Yousaf, B., Hamid, Y., Rehman, A., Arif, M., Ahmed, R., Ashraf, A., & Song, Y. (2022). A critical review on biochar-assisted free radicals mediated redox reactions influencing transformation of potentially toxic metals: Occurrence, formation, and environmental applications. Environmental Pollution (Barking, Essex: 1987), 315, 120335. https://doi.org/10.1016/j.envpol.2022.120335
  • Ren, T., Chen, N., Wan Mahari, W. A., Xu, C., Feng, H., Ji, X., Yin, Q., Chen, P., Zhu, S., Liu, H., Liu, G., Li, L., & Lam, S. S. (2021). Biochar for cadmium pollution mitigation and stress resistance in tobacco growth. Environmental Research, 192, 110273. https://doi.org/10.1016/j.envres.2020.110273
  • Rizwan, M., Ali, S., Rizvi, H., Rinklebe, J., Tsang, D. C. W., Meers, E., Ok, Y. S., & Ishaque, W. (2016). Phytomanagement of heavy metals in contaminated soils using sunflower: A review. Critical Reviews in Environmental Science and Technology, 46(18), 1498–1528. https://doi.org/10.1080/10643389.2016.1248199
  • Schiller, K., & Bräutigam, A. (2021). Engineering of crassulacean acid metabolism. Annual Review of Plant Biology, 72(1), 77–103. https://doi.org/10.1146/annurev-arplant-071720-104814
  • Sharifi, P., Bidabadi, S. S., Zaid, A., & Abdel Latef, A. A. H. (2021). Efficacy of multi-walled carbon nanotubes in regulating growth performance, total glutathione and redox state of Calendula officinalis L. cultivated on Pb and Cd polluted soil. Ecotoxicology and Environmental Safety, 213, 112051. https://doi.org/10.1016/j.ecoenv.2021.112051
  • Shi, J., Xun, M., Song, J., Li, J., Zhang, W., & Yang, H. (2023). Multi-walled carbon nanotubes promote the accumulation, distribution, and assimilation of 15N-KNO3 in Malus hupehensis by entering the roots. Frontiers in Plant Science, 14, 1131978. https://doi.org/10.3389/fpls.2023.1131978
  • Simmer, R. A., & Schnoor, J. L. (2022). Phytoremediation, Bioaugmentation, and the Plant Microbiome. Environmental Science & Technology, 56(23), 16602–16610. https://doi.org/10.1021/acs.est.2c05970
  • Smith, P. (2016). Soil carbon sequestration and biochar as negative emission technologies. Global Change Biology, 22(3), 1315–1324. https://doi.org/10.1111/gcb.13178
  • Song, B., Xu, P., Chen, M., Tang, W., Zeng, G., Gong, J., Zhang, P., & Ye, S. (2019). Using nanomaterials to facilitate the phytoremediation of contaminated soil. Critical Reviews in Environmental Science and Technology, 49(9), 791–824. https://doi.org/10.1080/10643389.2018.1558891
  • Song, B., Xu, P., Zeng, G., Gong, J., Zhang, P., Feng, H., Liu, Y., & Ren, X. (2018). Carbon nanotube-based environmental technologies: The adopted properties, primary mechanisms, and challenges. Reviews in Environmental Science and Bio/Technology, 17(3), 571–590. https://doi.org/10.1007/s11157-018-9468-z
  • Sorrentino, M. C., Capozzi, F., Amitrano, C., Giordano, S., Arena, C., & Spagnuolo, V. (2018). Performance of three cardoon cultivars in an industrial heavy metal-contaminated soil: Effects on morphology, cytology and photosynthesis. Journal of Hazardous Materials, 351, 131–137. https://doi.org/10.1016/j.jhazmat.2018.02.044
  • Sun, L., Wang, R., Ju, Q., & Xu, J. (2020). Physiological, metabolic, and transcriptomic analyses reveal the responses of arabidopsis seedlings to carbon nanohorns. Environmental Science & Technology, 54(7), 4409–4420. https://doi.org/10.1021/acs.est.9b07133
  • Sun, C., Wang, D., Shen, X., Li, C., Liu, J., Lan, T., Wang, W., Xie, H., & Zhang, Y. (2020). Effects of biochar, compost and straw input on root exudation of maize (Zea mays L.): From function to morphology. Agriculture, Ecosystems & Environment, 297, 106952. https://doi.org/10.1016/j.agee.2020.106952
  • Sun, H., Wang, M., Wang, J., & Wang, W. (2022). Surface charge affects foliar uptake, transport and physiological effects of functionalized graphene quantum dots in plants. The Science of the Total Environment, 812, 151506. https://doi.org/10.1016/j.scitotenv.2021.151506
  • Tan, Z., Wu, C., Xuan, Z., Cheng, Y., Xiong, R., Su, Z., & Wang, D. (2022). Lead exposure dose-dependently affects oxidative stress, AsA-GSH, photosynthesis, and mineral content in pakchoi (Brassica chinensis L.). Frontiers in Plant Science, 13, 1007276. https://doi.org/10.3389/fpls.2022.1007276
  • Velikova, V., Petrova, N., Kovács, L., Petrova, A., Koleva, D., Tsonev, T., Taneva, S., Petrov, P., & Krumova, S. (2021). Single-walled carbon nanotubes modify leaf micromorphology, chloroplast ultrastructure and photosynthetic activity of pea plants. International Journal of Molecular Sciences, 22(9), 4878. https://doi.org/10.3390/ijms22094878
  • Wan, X., Lei, M., & Chen, T. (2016). Cost–benefit calculation of phytoremediation technology for heavy-metal-contaminated soil. The Science of the Total Environment, 563-564, 796–802. https://doi.org/10.1016/j.scitotenv.2015.12.080
  • Wang, Z., Gao, X., & Zhao, Y. (2018). Mechanisms of antioxidant activities of fullerenols from first-principles calculation. The Journal of Physical Chemistry. A, 122(41), 8183–8190. https://doi.org/10.1021/acs.jpca.8b06340
  • Wang, G., Liu, L., & Zhang, Z. (2021). Interface mechanics in carbon nanomaterials-based nanocomposites. Composites Part A: Applied Science and Manufacturing, 141, 106212. https://doi.org/10.1016/j.compositesa.2020.106212
  • Wang, J., Xiong, Z., & Kuzyakov, Y. (2016). Biochar stability in soil: Meta-analysis of decomposition and priming effects. GCB Bioenergy. 8(3), 512–523. https://doi.org/10.1111/gcbb.12266
  • Wang, C., Yang, H., Chen, F., Yue, L., Wang, Z., & Xing, B. (2021). Nitrogen-doped carbon dots increased light conversion and electron supply to improve the corn photosystem and yield. Environmental Science & Technology, 55(18), 12317–12325. https://doi.org/10.1021/acs.est.1c01876
  • Wang, F., Zhang, R., Donne, S. W., Beyad, Y., Liu, X., Duan, X., Yang, T., Su, P., & Sun, H. (2022). Co-pyrolysis of wood chips and bentonite/kaolin: Influence of temperatures and minerals on characteristics and carbon sequestration potential of biochar. The Science of the Total Environment, 838(Pt 2), 156081. https://doi.org/10.1016/j.scitotenv.2022.156081
  • Wang, H., Zhang, M., Song, Y., Li, H., Huang, H., Shao, M., Liu, Y., & Kang, Z. (2018). Carbon dots promote the growth and photosynthesis of mung bean sprouts. Carbon, 136, 94–102. https://doi.org/10.1016/j.carbon.2018.04.051
  • Wang, S., Zheng, J., Wang, Y., Yang, Q., Chen, T., Chen, Y., Chi, D., Xia, G., Siddique, K. H. M., & Wang, T. (2021). Photosynthesis, chlorophyll fluorescence, and yield of peanut in response to biochar application. Frontiers in Plant Science, 12, 650432. https://doi.org/10.3389/fpls.2021.650432
  • Wei, Z., Van Le, Q., Peng, W., Yang, Y., Yang, H., Gu, H., Lam, S. S., & Sonne, C. (2021). A review on phytoremediation of contaminants in air, water and soil. Journal of Hazardous Materials, 403, 123658. https://doi.org/10.1016/j.jhazmat.2020.123658
  • Witters, N., Mendelsohn, R., Van Passel, S., Van Slycken, S., Weyens, N., Schreurs, E., Meers, E., Tack, F., Vanheusden, B., & Vangronsveld, J. (2012). Phytoremediation, a sustainable remediation technology? II: Economic assessment of CO2 abatement through the use of phytoremediation crops for renewable energy production. Biomass and Bioenergy, 39, 470–477. https://doi.org/10.1016/j.biombioe.2011.11.017
  • Woolf, D., Lehmann, J., Ogle, S., Kishimoto-Mo, A. W., McConkey, B., & Baldock, J. (2021). Greenhouse gas inventory model for biochar additions to soil. Environmental Science & Technology, 55(21), 14795–14805. https://doi.org/10.1021/acs.est.1c02425
  • Wu, M., Su, H., Li, C., Fu, Z., Wu, F., Yang, J., & Wang, L. (2023). Effects of foliar application of single-walled carbon nanotubes on carbohydrate metabolism in crabapple plants. Plant Physiology and Biochemistry: PPB, 194, 214–222. https://doi.org/10.1016/j.plaphy.2022.11.023
  • Xiang, Y., Deng, Q., Duan, H., & Guo, Y. (2017). Effects of biochar application on root traits: A meta-analysis. GCB Bioenergy, 9(10), 1563–1572. https://doi.org/10.1111/gcbb.12449
  • Xiang, L., Harindintwali, J. D., Wang, F., Redmile-Gordon, M., Chang, S. X., Fu, Y., He, C., Muhoza, B., Brahushi, F., Bolan, N., Jiang, X., Ok, Y. S., Rinklebe, J., Schaeffer, A., Zhu, Y., Tiedje, J. M., & Xing, B. (2022). Integrating biochar, bacteria, and plants for sustainable remediation of soils contaminated with organic pollutants. Environmental Science & Technology, 56(23), 16546–16566. https://doi.org/10.1021/acs.est.2c02976
  • Xiao, L., Guo, H., Wang, S., Li, J., Wang, Y., & Xing, B. (2019). Carbon dots alleviate the toxicity of cadmium ions (Cd2+) toward wheat seedlings. Environmental Science: Nano, 6(5), 1493–1506. https://doi.org/10.1039/C9EN00235A
  • Xiao, R., Huang, D., Du, L., Song, B., Yin, L., Chen, Y., Gao, L., Li, R., Huang, H., & Zeng, G. (2023). Antibiotic resistance in soil-plant systems: A review of the source, dissemination, influence factors, and potential exposure risks. The Science of the Total Environment, 869, 161855. https://doi.org/10.1016/j.scitotenv.2023.161855
  • Xiao, X., Wang, X., Liu, L., Chen, C., Sha, A., & Li, J. (2022). Effects of three graphene-based materials on the growth and photosynthesis of Brassica napus L. Ecotoxicology and Environmental Safety, 234, 113383. https://doi.org/10.1016/j.ecoenv.2022.113383
  • Xiong, J.-L., Li, J., Wang, H.-C., Zhang, C.-L., & Naeem, M. S. (2019). Fullerol improves seed germination, biomass accumulation, photosynthesis and antioxidant system in Brassica napus L. under water stress. Plant Physiology and Biochemistry, 129, 130–140. https://doi.org/10.1016/j.jes.2019.10.001
  • Xiu, L., Zhang, W., Wu, D., Sun, Y., Zhang, H., Gu, W., Wang, Y., Meng, J., & Chen, W. (2021). Biochar can improve biological nitrogen fixation by altering the root growth strategy of soybean in Albic soil. The Science of the Total Environment, 773, 144564. https://doi.org/10.1016/j.scitotenv.2020.1445640048-9697
  • Xu, Y., Seshadri, B., Sarkar, B., Wang, H., Rumpel, C., Sparks, D., Farrell, M., Hall, T., Yang, X., & Bolan, N. (2018). Biochar modulates heavy metal toxicity and improves microbial carbon use efficiency in soil. The Science of the Total Environment, 621, 148–159. https://doi.org/10.1016/j.scitotenv.2017.11.214
  • Xu, X., Zhao, Y., Sima, J., Zhao, L., Mašek, O., & Cao, X. (2017). Indispensable role of biochar-inherent mineral constituents in its environmental applications: A review. Bioresource Technology, 241, 887–899. https://doi.org/10.1016/j.biortech.2017.06.023
  • Yang, C., Han, N., Inoue, C., Yang, Y.-L., Nojiri, H., Ho, Y.-N., & Chien, M.-F. (2022). Rhizospheric plant-microbe synergistic interactions achieve efficient arsenic phytoextraction by Pteris vittata. Journal of Hazardous Materials, 434, 128870. https://doi.org/10.1016/j.jhazmat.2022.128870
  • Yang, Y., Sun, K., Han, L., Chen, Y., Liu, J., & Xing, B. (2022). Biochar stability and impact on soil organic carbon mineralization depend on biochar processing, aging and soil clay content. Soil Biology and Biochemistry, 169, 108657. https://doi.org/10.1016/j.soilbio.2022.108657
  • Yao, T., Liu, L., Tan, S., Li, H., Liu, X., Zeng, A., Pan, L., Li, X., Bai, L., Liu, K., & Xing, B. (2021). Can the multi-walled carbon nanotubes be used to alleviate the phytotoxicity of herbicides in soils? Chemosphere, 283, 131304. https://doi.org/10.1016/j.chemosphere.2021.131304
  • Zhang, Y., Liu, X., Fan, Y., Guo, X., Zhou, L., Lv, Y., & Lin, J. (2016). One-step microwave synthesis of N-doped hydroxyl-functionalized carbon dots with ultra-high fluorescence quantum yields. Nanoscale, 8(33), 15281–15287. https://doi.org/10.1039/c6nr03125k
  • Zhang, X., Liu, N., Lu, H., & Zhu, L. (2022). Molecular mechanism of organic pollutant-induced reduction of carbon fixation and biomass yield in Oryza sativa L. Environmental Science & Technology, 56(7), 4162–4172. https://doi.org/10.1021/acs.est.1c07835
  • Zhang, Z.-S., Liu, M.-J., Scheibe, R., Selinski, J., Zhang, L.-T., Yang, C., Meng, X.-L., & Gao, H.-Y. (2017). Contribution of the alternative respiratory pathway to PSII photoprotection in C3 and C4 plants. Molecular Plant, 10(1), 131–142. https://doi.org/10.1016/j.molp.2016.10.004
  • Zhang, M., Wang, H., Song, Y., Huang, H., Shao, M., Liu, Y., Li, H., & Kang, Z. (2018). Pristine carbon dots boost the growth of Chlorella vulgaris by enhancing photosynthesis. ACS Applied Bio Materials, 1(3), 894–902. https://doi.org/10.1021/acsabm.8b00319
  • Zhang, Y., Yang, C., Zheng, Z., Cao, B., You, F., Liu, Y., & Jiang, Z. (2021). Mechanism for various phytotoxicity of atrazine in soils to soybean: Insights from soil sorption abilities and dissolved organic matter properties. Journal of Environmental Management, 297, 113220. https://doi.org/10.1016/j.jhazmat.2011.12.011
  • Zhao, R., Ren, W., Wang, H., Li, Z., Teng, Y., & Luo, Y. (2022). Nontargeted metabolomic analysis to unravel alleviation mechanisms of carbon nanotubes on inhibition of alfalfa growth under pyrene stress. The Science of the Total Environment, 852, 158405. https://doi.org/10.1016/j.scitotenv.2022.158405
  • Zheng, H., Wang, X., Luo, X., Wang, Z., & Xing, B. (2018). Biochar-induced negative carbon mineralization priming effects in a coastal wetland soil: Roles of soil aggregation and microbial modulation. The Science of the Total Environment, 610–611, 951–960. https://doi.org/10.1016/j.scitotenv.2017.08.166
  • Zhou, W., Huang, D., Chen, S., Du, L., Wang, G., Li, R., & Xu, W. (2023). Modified nano zero-valent iron reduce toxicity of polystyrene microplastics to ryegrass (Lolium Perenne L.). Chemosphere, 337, 139152. https://doi.org/10.1016/j.chemosphere.2023.139152
  • Zhou, Z., Li, J., Li, C., Guo, Q., Hou, X., Zhao, C., Wang, Y., Chen, C., & Wang, Q. (2023). Effects of Graphene Oxide on the Growth and Photosynthesis of the Emergent Plant Iris pseudacorus. Plants (Basel, Switzerland), 12(9), 9. https://doi.org/10.3390/plants12091738
  • Zhu, X., Chen, B., Zhu, L., & Xing, B. (2017). Effects and mechanisms of biochar-microbe interactions in soil improvement and pollution remediation: A review. Environmental Pollution (Barking, Essex: 1987), 227, 98–115. https://doi.org/10.1016/j.envpol.2017.04.032
  • Zhu, Y., Zhang, Q., Li, Y., Pan, Z., Liu, C., Lin, D., Gao, J., Tang, Z., Li, Z., Wang, R., & Sun, J. (2023). Role of soil and foliar-applied carbon dots in plant iron biofortification and cadmium mitigation by triggering opposite iron signaling in roots. Small (Weinheim an Der Bergstrasse, Germany), 19(35), e2301137. https://doi.org/10.1002/smll.202301137

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.