951
Views
2
CrossRef citations to date
0
Altmetric
Teacher's Corner

Finding the Optimal Number of Persons (N) and Time Points (T) for Maximal Power in Dynamic Longitudinal Models Given a Fixed Budget

Pages 535-551 | Received 08 Feb 2023, Accepted 24 Jun 2023, Published online: 22 Aug 2023

References

  • Adolf, J. K., Loossens, T., Tuerlinckx, F., & Ceulemans, E. (2021). Optimal sampling rates for reliable continuous-time first-order autoregressive and vector autoregressive modeling. Psychological Methods, 26, 701–718. https://doi.org/10.1037/met0000398
  • Allison, D. B. (1995). When is it worth measuring a covariate in a randomized clinical trial? Journal of Consulting and Clinical Psychology, 63, 339–343. https://doi.org/10.1037//0022-006x.63.3.339
  • Allison, D. B., Allison, R. L., Faith, M. S., Paultre, F., & Pi-Sunyer, F. X. (1997). Power and money: Designing statistically powerful studies while minimizing financial costs. Psychological Methods, 2, 20–33. https://doi.org/10.1037/1082-989X.2.1.20
  • Anderson, S. F., Kelley, K., & Maxwell, S. E. (2017). Sample-size planning for more accurate statistical power: A method adjusting sample effect sizes for publication bias and uncertainty. Psychological Science, 28, 1547–1562. https://doi.org/10.1177/0956797617723724
  • Basagaña, X., & Spiegelman, D. (2010). Power and sample size calculations for longitudinal studies comparing rates of change with a time-varying exposure. Statistics in Medicine, 29, 181–192. https://doi.org/10.1002/sim.3772
  • Basagaña, X., Xiaomei, L., & Spiegelman, D. (2011). Power and sample size calculations for longitudinal studies estimating a main effect of a time-varying exposure. Statistical Methods in Medical Research, 20, 471–487. https://doi.org/10.1177/0962280210371563
  • Berry, D., & Willoughby, M. T. (2017). On the practical interpretability of cross-lagged panel models: Rethinking a developmental workhorse. Child Development, 88, 1186–1206. https://doi.org/10.1111/cdev.12660
  • Bollen, K. A. (1989). Structural equations with latent variables. John Wiley & Sons.
  • Bollen, K. A., & Curran, P. J. (2004). Autoregressive latent trajectory (ALT) models: A synthesis of two traditions. Sociological Methods & Research, 32, 336–383. https://doi.org/10.1177/0049124103260222
  • Bolger, N., Stadler, G., & Laurenceau, J.-P. (2012). Power analysis for intensive longitudinal studies. In M. R. Mehl & T. S. Conner (Eds.), Handbook of research methods for studying daily life (pp. 285–301). The Guilford Press.
  • Brockwell, P. J., & Davis, R. A. (2002). Introduction to time series and forecasting (2nd ed.). Springer.
  • Brandmaier, A. M., von Oertzen, T., Ghisletta, P., Hertzog, C., & Lindenberger, U. (2015). LIFESPAN: A tool for the computer-aided design of longitudinal studies. Frontiers in Psychology, 6, 272. https://doi.org/10.3389/fpsyg.2015.00272
  • Brandmaier, A. M., Ghisletta, P., & von Oertzen, T. (2020). Optimal planned missing data design for linear latent growth curve models. Behavior Research Methods, 52, 1445–1458. https://doi.org/10.3758/s13428-019-01325-y
  • Champely, S. (2020). pwr: Basic functions for power analysis [Computer software] (version 1.3-0). https://cran.r-project.org/package=pwr
  • Cole, D. A., Martin, N. C., & Steiger, J. H. (2005). Empirical and conceptual problems with longitudinal trait-state models: Introducing a trait-state-occasion model. Psychological Methods, 10, 3–20. https://doi.org/10.1037/1082-989X.10.1.3
  • Cools, W., van den Noortgate, W., & Onghena, P. (2008). Ml-des: A program for designing efficient multilevel studies. Behavior Research Methods, 40, 236–249. https://doi.org/10.3758/BRM.40.1.236
  • Crutzen, R., & Peters, G.-J Y. (2017). Targeting next generations to change the common practice of underpowered research. Frontiers in Psychology, 8, 1184. https://doi.org/10.3389/fpsyg.2017.01184
  • Curran, P. J., & Bollen, K. A. (2001). The best of both worlds: Combining autoregressive and latent curve models. In L. M. Collins & A. G. Sayer (Eds.), New methods for the analysis of change (pp. 107–135). American Psychological Association. https://doi.org/10.1037/10409-004
  • Curran, P. J. (2003). Have multilevel models been structural equation models all along? Multivariate Behavioral Research, 38, 529–569. https://doi.org/10.1207/s15327906mbr3804_5
  • Curran, P. J., Howard, A. L., Bainter, S. A., Lane, S. T., & McGinley, J. S. (2014). The separation of between-person and within-person components of individual change over time: A latent curve model with structured residuals. Journal of Consulting and Clinical Psychology, 82, 879–894. https://doi.org/10.1037/a0035297
  • Enders, W. (2015). Applied econometric time series. (4th ed.). Wiley.
  • Faul, F., Erdfelder, E., Lang, A.-G., & Buchner, A. (2007). G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behavior Research Methods, 39, 175–191. https://doi.org/10.3758/BF03193146
  • Fan, X. (2003). Power of latent growth modeling for detecting group differences in linear growth trajectory parameters. Structural Equation Modeling: A Multidisciplinary Journal, 10, 380–400. https://doi.org/10.1207/S15328007SEM1003_3
  • Ferguson, T. S. (1996). A course in large sample theory. Springer. https://doi.org/10.1007/978-1-4899-4549-5
  • Hertzog, C., Lindenberger, U., Ghisletta, P., & von Oertzen, T. (2006). On the power of multivariate latent growth curve models to detect correlated change. Psychological Methods, 11, 244–252. https://doi.org/10.1037/1082-989X.11.3.244
  • Hertzog, C., von Oertzen, T., Ghisletta, P., & Lindenberger, U. (2008). Evaluating the power of latent growth curve models to detect individual differences in change. Structural Equation Modeling: A Multidisciplinary Journal, 15, 541–563. https://doi.org/10.1080/10705510802338983
  • Hamagami, F., & McArdle, J. J. (2001). Advanced studies of individual differences: Linear dynamic models for longitudinal data analysis. In G. A. Marcoulides & R. E. Schumacker (Eds.), New developments and techniques in structural equation modeling (pp. 203–246). Psychology Press. https://doi.org/10.4324/9781410601858
  • Hamaker, E. L., Kuiper, R. M., & Grasman, R. P. P. P. (2015). A critique of the cross-lagged panel model. Psychological Methods, 20, 102–116. https://doi.org/10.1037/a0038889
  • Hamilton, J. D. (1994). Time series analysis (Vol. 2). Princeton University Press.
  • Harrall, K. K., Muller, K. E., Starling, A. P., Dabelea, D., Barton, K. E., Adgate, J. L., & Glueck, D. H. (2023). Power and sample size analysis for longitudinal mixed models of health in populations exposed to environmental contaminants: A tutorial. BMC Medical Research Methodology, 23, 1–13. https://doi.org/10.1186/s12874-022-01819-y
  • Hecht, M., Hardt, K., Driver, C. C., & Voelkle, M. C. (2019). Bayesian continuous-time Rasch models. Psychological Methods, 24, 516–537. https://doi.org/10.1037/met0000205
  • Hecht, M., & Voelkle, M. C. (2021). Continuous-time modeling in prevention research: An illustration. International Journal of Behavioral Development, 45, 19–27. https://doi.org/10.1177/0165025419885026
  • Hecht, M., & Zitzmann, S. (2020). A computationally more efficient Bayesian approach for estimating continuous-time models. Structural Equation Modeling: A Multidisciplinary Journal, 27, 829–840. https://doi.org/10.1080/10705511.2020.1719107
  • Hecht, M., & Zitzmann, S. (2021). Exploring the unfolding of dynamic effects with continuous-time models: Recommendations concerning statistical power to detect peak cross-lagged effects. Structural Equation Modeling: A Multidisciplinary Journal, 28, 894–902. https://doi.org/10.1080/10705511.2021.1914627
  • Iddi, S., & Donohue, M. C. (2022). Power and sample size for longitudinal models in R – The longpower package and Shiny app. The R Journal, 14, 264–282. https://doi.org/10.32614/RJ-2022-022
  • Jak, S., Jorgensen, T. D., Verdam, M. G. E., Oort, F. J., & Elffers, L. (2021). Analytical power calculations for structural equation modeling: A tutorial and Shiny app. Behavior Research Methods, 53, 1385–1406. https://doi.org/10.3758/s13428-020-01479-0
  • Kenny, D. A., & Zautra, A. (1995). The trait-state-error model for multiwave data. Journal of Consulting and Clinical Psychology, 63, 52–59. https://doi.org/10.1037/0022-006X.63.1.52
  • Kenny, D. A., & Zautra, A. (2001). Trait-state models for longitudinal data. In L. M. Collins & A. G. Sayer (Eds.), New methods for the analysis of change (pp. 243–263). American Psychological Association.
  • Lafit, G., Adolf, J. K., Dejonckheere, E., Myin-Germeys, I., Viechtbauer, W., & Ceulemans, E. (2021). Selection of the number of participants in intensive longitudinal studies: A user-friendly Shiny app and tutorial for performing power analysis in multilevel regression models that account for temporal dependencies. Advances in Methods and Practices in Psychological Science, 4. https://doi.org/10.1177/2515245920978738
  • Lafit, G., Artner, R., & Ceulemans, E. (2023). Enabling analytical power calculations for multilevel models with autocorrelated errors through deriving and approximating the information matrix. PsyArXiv. https://doi.org/10.31234/osf.io/tj5bv
  • Lafit, G., Sels, L., Adolf, J. K., Loeys, T., & Ceulemans, E. (2022). PowerLAPIM: An application to conduct power analysis for linear and quadratic longitudinal actor-partner interdependence models in intensive longitudinal dyadic designs. Journal of Social and Personal Relationships, 39, 3085–3115. https://doi.org/10.1177/02654075221080128
  • Liu, G., & Liang, K.-Y. (1997). Sample size calculations for studies with correlated observations. Biometrics, 53, 937–947. https://doi.org/10.2307/2533554
  • Lohmann, J. F., Zitzmann, S., Voelkle, M. C., & Hecht, M. (2022). A primer on continuous-time modeling in educational research: An exemplary application of a continuous-time latent curve model with structured residuals (CT-LCM-SR) to PISA data. Large-Scale Assessments in Education, 10, 32. https://doi.org/10.1186/s40536-022-00126-8
  • Lu, K., Luo, X., & Chen, P.-Y. (2008). Sample size estimation for repeated measures analysis in randomized clinical trials with missing data. The International Journal of Biostatistics, 4, 9. https://doi.org/10.2202/1557-4679.1098
  • Luhmann, M., Schimmack, U., & Eid, M. (2011). Stability and variability in the relationship between subjective well-being and income. Journal of Research in Personality, 45, 186–197. https://doi.org/10.1016/j.jrp.2011.01.004
  • Lütkepohl, H. (2005). New introduction to multiple time series analysis. Springer.
  • MacCallum, R. C., Browne, M. W., & Sugawara, H. M. (1996). Power analysis and determination of sample size for covariance structure modeling. Psychological Methods, 1, 130–149. https://doi.org/10.1037/1082-989X.1.2.130
  • McArdle, J. J., & Hamagami, F. (2001). Latent difference score structural models for linear dynamic analyses with incomplete longitudinal data. In L. M. Collins & A. G. Sayer (Eds.), New methods for the analysis of change (pp. 137–175). American Psychological Association.
  • McArdle, J. J. (2009). Latent variable modeling of differences and changes with longitudinal data. Annual Review of Psychology, 60, 577–605. https://doi.org/10.1146/annurev.psych.60.110707.163612
  • Mebane, W. R., & Sekhon, J. S. (2011). Genetic optimization using derivatives: The rgenoud package for R. Journal of Statistical Software, 42, 1–26. https://doi.org/10.18637/jss.v042.i11
  • Mehta, P. D., & Neale, M. C. (2005). People are variables too: Multilevel structural equations modeling. Psychological Methods, 10, 259–284. https://doi.org/10.1037/1082-989X.10.3.259
  • Moerbeek, M. (2022). Power analysis of longitudinal studies with piecewise linear growth and attrition. Behavior Research Methods, 54, 2939–2948. https://doi.org/10.3758/s13428-022-01791-x
  • Mulder, J. D., & Hamaker, E. L. (2021). Three extensions of the random intercept cross-lagged panel model. Structural Equation Modeling: A Multidisciplinary Journal, 28, 638–648. https://doi.org/10.1080/10705511.2020.1784738
  • Muthén, B. O., & Curran, P. J. (1997). General longitudinal modeling of individual differences in experimental designs: A latent variable framework for analysis and power estimation. Psychological Methods, 2, 371–402. https://doi.org/10.1037/1082-989X.2.4.371
  • Muthén, L. K., & Muthén, B. O. (2002). How to use a Monte Carlo study to decide on sample size and determine power. Structural Equation Modeling: A Multidisciplinary Journal, 9, 599–620. https://doi.org/10.1207/S15328007SEM0904_8
  • Oberski, D. L. (2009). Jrule for Mplus [Computer software]. https://doi.org/10.5281/zenodo.10657
  • R Core Team (2022). R: A language and environment for statistical computing. R Foundation for Statistical Computing. https://www.r-project.org
  • Rao, C. R. (1973). Linear statistical inference and its applications (2nd ed.). Wiley.
  • Raudenbush, S. W., et al. (2011). Optimal design software for multi-level and longitudinal research [Computer software]. http://hlmsoft.net/od
  • Raudenbush, S. W., & Liu, X.-F. (2001). Effects of study duration, frequency of observation, and sample size on power in studies of group differences in polynomial change. Psychological Methods, 6, 387–401. https://doi.org/10.1037/1082-989X.6.4.387
  • Ryan, O., Kuiper, R. M., & Hamaker, E. L. (2018). A continuous time approach to intensive longitudinal data: What, why and how? In K. van Montfort, J. H. L. Oud, & M. C. Voelkle (Eds.), Continuous time modeling in the behavioral and related sciences (pp. 27–57). Springer International Publishing. https://doi.org/10.1007/978-3-319-77219-6
  • Saris, W. E., Satorra, A., & Van der Veld, W. M. (2009). Testing structural equation models or detection of misspecifications? Structural Equation Modeling: A Multidisciplinary Journal, 16, 561–582. https://doi.org/10.1080/10705510903203433
  • Satorra, A., & Saris, W. E. (1985). Power of the likelihood ratio test in covariance structure analysis. Psychometrika, 50, 83–90. https://doi.org/10.1007/BF02294150
  • Schlesselman, J. J. (1973). Planning a longitudinal study: II. Frequency of measurement and study duration. Journal of Chronic Diseases, 26, 561–570. https://doi.org/10.1016/0021-9681(73)90061-1
  • Selig, J. P., & Little, T. D. (2012). Autoregressive and cross-lagged panel analysis for longitudinal data. In B. Laursen, T. D. Little, & N. A. Card (Eds.), Handbook of developmental research methods (pp. 265–278). The Guilford Press.
  • Shumway, R. H., & Stoffer, D. S. (2015). Time series analysis and its applications (EZ Edition). Springer.
  • Taylor, D. J., & Muller, K. E. (1995). Computing confidence bounds for power and sample size of the general linear univariate model. The American Statistician, 49, 43–47. https://doi.org/10.2307/2684810
  • Taylor, D. J., & Muller, K. E. (1996). Bias in linear model power and sample size calculation due to estimating noncentrality. Communications in Statistics - Theory and Methods, 25, 1595–1610. https://doi.org/10.1080/03610929608831787
  • Tekle, F. B., Tan, F. E. S., & Berger, M. P. F. (2011). Too many cohorts and repeated measurements are a waste of resources. Journal of Clinical Epidemiology, 64, 1383–1390. https://doi.org/10.1016/j.jclinepi.2010.11.023
  • Usami, S., Hayes, T., & McArdle, J. J. (2015). On the mathematical relationship between latent change score and autoregressive cross-lagged factor approaches: Cautions for inferring causal relationship between variables. Multivariate Behavioral Research, 50, 676–687. https://doi.org/10.1080/00273171.2015.1079696
  • Usami, S., Murayama, K., & Hamaker, E. L. (2019). A unified framework of longitudinal models to examine reciprocal relations. Psychological Methods, 24, 637–657. https://doi.org/10.1037/met0000210
  • van Breukelen, G. J. P. (2013). Optimal experimental design with nesting of persons in organizations. Zeitschrift für Psychologie, 221, 145–159. https://doi.org/10.1027/2151-2604/a000143
  • von Oertzen, T. (2010). Power equivalence in structural equation modelling. The British Journal of Mathematical and Statistical Psychology, 63, 257–272. https://doi.org/10.1348/000711009X441021
  • von Oertzen, T., Ghisletta, P., & Lindenberger, U. (2010). Simulating power in latent growth curve modeling. In M. W. Crocker & J. Siekmann (Eds.), Resource-adaptive cognitive processes (pp. 95–117). Springer.
  • von Oertzen, T., & Brandmaier, A. M. (2013). Optimal study design with identical power: An application of power equivalence to latent growth curve models. Psychology and Aging, 28, 414–428. https://doi.org/10.3758/s13428-013-0384-4
  • Voelkle, M. C., Gische, C., Driver, C. C., & Lindenberger, U. (2018). The role of time in the quest for understanding psychological mechanisms. Multivariate Behavioral Research, 53, 782–805. https://doi.org/10.1080/00273171.2018.1496813
  • Voelkle, M. C., & Oud, J. H. L. (2013). Continuous time modelling with individually varying time intervals for oscillating and non-oscillating processes: Continuous time modelling. The British Journal of Mathematical and Statistical Psychology, 66, 103–126. https://doi.org/10.1111/j.2044-8317.2012.02043.x
  • Voelkle, M. C., Oud, J. H. L., Davidov, E., & Schmidt, P. (2012). An SEM approach to continuous time modeling of panel data: Relating authoritarianism and anomia. Psychological Methods, 17, 176–192. https://doi.org/10.1037/a0027543
  • Wang, Y. A., & Rhemtulla, M. (2021). Power analysis for parameter estimation in structural equation modeling: A discussion and tutorial. Advances in Methods and Practices in Psychological Science, 4. https://doi.org/10.1177/2515245920918253
  • Wu, W., Jia, F., Rhemtulla, M., & Little, T. D. (2016). Search for efficient complete and planned missing data designs for analysis of change. Behavior Research Methods, 48, 1047–1061. https://doi.org/10.3758/s13428-015-0629-5
  • Zitzmann, S., Wagner, W., Lavelle-Hill, R., Jung, A., Jach, H., Loreth, L., Lindner, C., Schmidt, F. T. C., Edelsbrunner, P. A., Schaefer, C. D., Deutschländer, R., Schauber, S., Krammer, G., Wolff, F., Hui, B., Fischer, C., Bardach, L., Nagengast, B., Hecht, M., et al. (2023). On the role of variation in measures, the worth of underpowered studies, and the need for tolerance among researchers: Some more reflections on Leising (2022) from a methodological, statistical, and social-psychological perspective [Manuscript submitted for publication].
  • Zitzmann, S., Wagner, W., Hecht, M., Helm, C., Fischer, C., Bardach, L., & Göllner, R. (2022). How many classes and students should ideally be sampled when assessing the role of classroom climate via student ratings on a limited budget? An optimal design perspective. Educational Psychology Review, 34, 511–536. https://doi.org/10.1007/s10648-021-09635-4