5,851
Views
34
CrossRef citations to date
0
Altmetric
RESEARCH ARTICLE

Hepatic stellate cell reprogramming via exosome-mediated CRISPR/dCas9-VP64 delivery

ORCID Icon, ORCID Icon, , , , & show all
Pages 10-18 | Received 16 Aug 2020, Accepted 09 Nov 2020, Published online: 18 Dec 2020

References

  • Aizarani N, Saviano Sagar A, Mailly L, et al. (2019). A human liver cell atlas reveals heterogeneity and epithelial progenitors. Nature 572:199–204.
  • Babuta M, Furi I, Bala S, et al. (2019). Dysregulated autophagy and lysosome function are linked to exosome production by micro-RNA 155 in alcoholic liver disease. Hepatology 70:2123–41.
  • Chang YK, Hwang JS, Chung TY, Shin YJ. (2018). SOX2 activation using CRISPR/dCas9 promotes wound healing in corneal endothelial cells. Stem Cells 36:1851–62.
  • Chen L, Chen R, Kemper S, et al. (2018). Therapeutic effects of serum extracellular vesicles in liver fibrosis. J Extracell Vesicles 7:1461505.
  • Chen R, Huang H, Liu H, et al. (2019). Friend or foe? Evidence indicates endogenous exosomes can deliver functional gRNA and Cas9 protein. Small 15:e1902686.
  • Choi S, Dong B, Lin CJ, et al. (2020). Methyl-sensing nuclear receptor liver receptor homolog-1 regulates mitochondrial function in mouse hepatocytes. Hepatology 71:1055–69.
  • Cress BF, Jones JA, Kim DC, et al. (2016). Rapid generation of CRISPR/dCas9-regulated, orthogonally repressible hybrid T7-lac promoters for modular, tuneable control of metabolic pathway fluxes in Escherichia coli. Nucleic Acids Res 44:4472–85.
  • Daassi D, Mahoney KM, Freeman GJ. (2020). The importance of exosomal PDL1 in tumour immune evasion. Nat Rev Immunol 20:209–15.
  • Deng X, Zhang X, Li W, et al. (2018). Chronic liver injury induces conversion of biliary epithelial cells into hepatocytes. Cell Stem Cell 23:114–22.e3.
  • DeRossi C, Bambino K, Morrison J, et al. (2019). Mannose phosphate isomerase and mannose regulate hepatic stellate cell activation and fibrosis in zebrafish and humans. Hepatology 70:2107–22.
  • Forbes SJ, Newsome PN. (2016). Liver regeneration – mechanisms and models to clinical application. Nat Rev Gastroenterol Hepatol 13:473–85.
  • Greuter T, Shah VH. (2019). Too stiff, too late timing is everything in antiangiogenic treatment of liver fibrosis. Hepatology 69:449–51.
  • Himeda CL, Jones TI, Jones PL. (2016). CRISPR/dCas9-mediated transcriptional inhibition ameliorates the epigenetic dysregulation at D4Z4 and represses DUX4-fl in FSH muscular dystrophy. Mol Ther 24:527–35.
  • Iredale JP. (2004). A cut above the rest? MMP-8 and liver fibrosis gene therapy. Gastroenterology 126:1199–201.
  • Kaufmann KB, Buning H, Galy A, et al. (2013). Gene therapy on the move. EMBO Mol Med 5:1642–61.
  • Koh E, Lee EJ, Nam GH, et al. (2017). Exosome-SIRPα, a CD47 blockade increases cancer cell phagocytosis. Biomaterials 121:121–9.
  • Konermann S, Brigham MD, Trevino AE, et al. (2015). Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex. Nature 517:583–8.
  • Kyritsi K, Chen L, O'Brien A, et al. (2020). Modulation of the tryptophan hydroxylase 1/monoamine oxidase-A/5-hydroxytryptamine/5-hydroxytryptamine receptor 2A/2B/2C axis regulates biliary proliferation and liver fibrosis during cholestasis. Hepatology 71:990–1008.
  • Lee YA, Wallace MC, Friedman SL. (2015). Pathobiology of liver fibrosis: a translational success story. Gut 64:830–41.
  • Leidal AM, Huang HH, Marsh T, et al. (2020). The LC3-conjugation machinery specifies the loading of RNA-binding proteins into extracellular vesicles. Nat Cell Biol 22:187–99.
  • Li Z, Zhou X, Wei M, et al. (2019). In vitro and in vivo RNA inhibition by CD9-HuR functionalized exosomes encapsulated with miRNA or CRISPR/dCas9. Nano Lett 19:19–28.
  • Lin Y, Wu J, Gu W, et al. (2018). Exosome-liposome hybrid nanoparticles deliver CRISPR/Cas9 system in MSCs. Adv Sci (Weinh) 5:1700611.
  • O’Brien K, Breyne K, Ughetto S, et al. (2020). RNA delivery by extracellular vesicles in mammalian cells and its applications. Nat Rev Mol Cell Biol 21:585–606.
  • Reshke R, Taylor JA, Savard A, et al. (2020). Reduction of the therapeutic dose of silencing RNA by packaging it in extracellular vesicles via a pre-microRNA backbone. Nat Biomed Eng 4:52–68.
  • Rousset F, Cui L, Siouve E, et al. (2018). Genome-wide CRISPR-dCas9 screens in E. coli identify essential genes and phage host factors. PLoS Genet 14:e1007749.
  • Schattenberg JM. (2019). Reading the stars for hepatic fibrosis or how to predict the severity of liver disease in patients with NASH. Liver Int 39:812–4.
  • Tao L, Ma W, Wu L, et al. (2019). Glial cell line-derived neurotrophic factor (GDNF) mediates hepatic stellate cell activation via ALK5/Smad signalling. Gut 68:2214–27.
  • Tsuchida T, Friedman SL. (2017). Mechanisms of hepatic stellate cell activation. Nat Rev Gastroenterol Hepatol 14:397–411.
  • van de Vlekkert D, Demmers J, Nguyen XX, et al. (2019). Excessive exosome release is the pathogenic pathway linking a lysosomal deficiency to generalized fibrosis. Sci Adv 5:eaav3270.
  • Wiklander OPB, Brennan MA, Lotvall J, et al. (2019). Advances in therapeutic applications of extracellular vesicles. Sci Transl Med 11:eaav8521.
  • Wu JY, Ji AL, Wang ZX, et al. (2018). Exosome-mimetic nanovesicles from hepatocytes promote hepatocyte proliferation in vitro and liver regeneration in vivo. Sci Rep 8:2471
  • Xiao B, Yin S, Hu Y, et al. (2019). Epigenetic editing by CRISPR/dCas9 in Plasmodium falciparum. Proc Natl Acad Sci USA 116:255–60.
  • Yla-Herttuala S. (2017). The pharmacology of gene therapy. Mol Ther 25:1731–2.
  • Yue HY, Yin C, Hou JL, et al. (2010). Hepatocyte nuclear factor 4alpha attenuates hepatic fibrosis in rats. Gut 59:236–46.
  • Zhang XW, Zhou JC, Peng D, et al. (2020). Disrupting the TRIB3-SQSTM1 interaction reduces liver fibrosis by restoring autophagy and suppressing exosome-mediated HSC activation. Autophagy 16:782–96.