2,671
Views
17
CrossRef citations to date
0
Altmetric
Research Article

Model-based optimized steering and focusing of local magnetic particle concentrations for targeted drug delivery

, , &
Pages 63-76 | Received 24 Sep 2020, Accepted 16 Nov 2020, Published online: 21 Dec 2020

References

  • Al-Jamal KT, Bai J, Wang JT-W, et al. (2016). Magnetic drug targeting: preclinical in vivo studies, mathematical modeling, and extrapolation to humans. Nano Lett 16:5652–60.
  • Alla A, Falcone M. (2013). An adaptive POD approximation method for the control of advection-diffusion equations. Basel: Springer Basel, 1–17.
  • Antil H, Nochetto RH, Venegas P. (2018). Controlling the Kelvin force: basic strategies and applications to magnetic drug targeting. Optim Eng 19:559–89.
  • Bae YH, Park K. (2011). Targeted drug delivery to tumors: myths, reality and possibility. J Control Release 153:198–205.
  • Batlle X, Labarta A. (2002). Finite-size effects in fine particles: magnetic and transport properties. J Phys D Appl Phys 35:R15–R42.
  • Baumann M. (2013). Nonlinear model order reduction using pod/deim for optimal control of Burgers’ equation. Netherlands: Delft University of Technology.
  • Bejan A. (2013). Convection heat transfer. Hoboken (NJ): John Wiley & sons.
  • Benhal P, Broda A, Najafali D, et al. (2019). On-chip testing of the speed of magnetic nano-and micro-particles under a calibrated magnetic gradient. J Magn Magn Mater 474:187–98.
  • Bock HG, Plitt K-J. (1984). A multiple shooting algorithm for direct solution of optimal control problems. IFAC Proceedings Volumes 17:1603–8.
  • Boyer TH. (1988). The force on a magnetic dipole. Am J Phys 56:688–92.
  • Burke BA, Diamond SG. (2012). Measuring cerebral hemodynamics with a modified magnetoencephalography system. Physiol Meas 33:2079–98.
  • Carrey J, Mehdaoui B, Respaud M. (2011). Simple models for dynamic hysteresis loop calculations of magnetic single-domain nanoparticles: Application to magnetic hyperthermia optimization. J Appl Phys 109:083921.1–17.
  • Cherry EM, Maxim PG, Eaton JK. (2010). Particle size, magnetic field, and blood velocity effects on particle retention in magnetic drug targeting. Med Phys 37:175–82.
  • Chertok B, David AE, Yang VC. (2011). Brain tumor targeting of magnetic nanoparticles for potential drug delivery: effect of administration route and magnetic field topography. J Control Release 155:393–9.
  • Coene A, Leliaert J, Liebl M, et al. (2017). Multi-color magnetic nanoparticle imaging using magnetorelaxometry. Phys Med Biol 62:3139–57.
  • Diehl M, Bock HG, Diedam H, Wieber P-B. (2006). Fast direct multiple shooting algorithms for optimal robot control. In: Diehl M, Mombaur K, eds. Fast motions in biomechanics and robotics. Heidelberg (Germany): Springer, 65–93.
  • Earnshaw S. (1842). On the nature of the molecular forces. Trans Camb Phil Soc 7:97–112.
  • Fick A. (1855). V. on liquid diffusion. London Edinburgh Dublin Philosoph Magaz J Sci 10:30–9.
  • Forbes ZG, Yellen BB, Barbee KA, et al. (2003). An approach to targeted drug delivery based on uniform magnetic fields. IEEE Trans Magn 39:3372–7.
  • Furlani E, Ng K. (2006). Analytical model of magnetic nanoparticle transport and capture in the microvasculature. Phys Rev E 73:61919.
  • Furlani EP. (2010). Magnetic biotransport: analysis and applications. Materials 3:2412–46.
  • Gerber R, Takayasu M, Friedlaender F. (1983). Generalization of hgms theory: the capture of ultra-fine particles. IEEE Trans Magn 19:2115–7.
  • Gleich B, Weizenecker J. (2005). Tomographic imaging using the nonlinear response of magnetic particles,. Nature 435:1214–7.
  • Grief AD, Richardson G. (2005). Mathematical modelling of magnetically targeted drug delivery. J Magn Magn Mater 293:455–63.
  • Khalil IS, et al. (2016). Robust and optimal control of magnetic microparticles inside fluidic channels with time-varying flow rates. Int J Adv Rob Syst 13:123.
  • Kodama R. (1999). Magnetic nanoparticles. J Magn Magn Mater 200:359–72.
  • Kolitsi LI, Yiantsios SG. (2020). Transport of nanoparticles in magnetic targeting: Comparison of magnetic, diffusive and convective forces and fluxes in the microvasculature, through vascular pores and across the interstitium. Microvasc Res 130:104007.
  • Komaee A, Shapiro B. (2011). Magnetic steering of a distributed ferrofluid spot towards a deep target with minimal spreading, in 2011 50th IEEE Conference on Decision and Control and European Control Conference. IEEE, 7950–7955.
  • Komaee A, Shapiro B. (2012). Steering a ferromagnetic particle by optimal magnetic feedback control. IEEE Trans Contr Syst Technol 20:1011–24.
  • Komaee A. (2017). Feedback control for transportation of magnetic fluids with minimal dispersion: A first step toward targeted magnetic drug delivery. IEEE Trans Contr Syst Technol 25:129–44.
  • Kunisch K, Volkwein S. (2010). Optimal snapshot location for computing pod basis functions. Esaim M2AN 44:509–29.
  • Lassila T, Manzoni A, Quarteroni A, Rozza G. (2014). Model order reduction in fluid dynamics: challenges and perspectives. In: Quarteroni A, Rozza G , eds. Reduced order methods for modeling and computational reduction. New York (NY): Springer, 235–273.
  • Leunberger D. (1979). Introduction to dynamic systems: theory, models, and applications. New York: Wiley.
  • Liu JF, Jang B, Issadore D, Tsourkas A. (2019). Use of magnetic fields and nanoparticles to trigger drug release and improve tumor targeting. Wiley Interdiscip Rev Nanomed Nanobiotechnol 11:e1571.
  • Liu Y-L, Chen D, Shang P, et al. (2019). A review of magnet systems for targeted drug delivery. J Control Release 302:90–104.
  • Liu Y-L, Chen J-J, Ahmad F, et al. (2020). A novel approach to accumulate superparamagnetic particles in aqueous environment using time-varying magnetic field. IEEE Trans Biomed Eng 67:1558–64.
  • Lübbe A, Alexiou C, Bergemann C. (2001). Clinical applications of magnetic drug targeting. J Surg Res 95:200–6.
  • Lübbe A, Bergemann C, Riess H, et al. (1996). Clinical experiences with magnetic drug targeting: a phase I study with 4’-epidoxorubicin in 14 patients with advanced solid tumors. Cancer Res 56:4686–93.
  • Mirza S. (2020). Magnetic nanoparticles: drug delivery and bioimaging applications. In: Shah MR, Imran M, Ullah S , eds. Metal nanoparticles for drug delivery and diagnostic applications. Amsterdam (The Netherlands): Elsevier, 189–213.
  • Muthana M, Kennerley AJ, Hughes R, et al. (2015). Directing cell therapy to anatomic target sites in vivo with magnetic resonance targeting. Nat Commun 6:1–11.
  • Nacev A, Beni C, Bruno O, et al. (2010). Magnetic nanoparticle transport within flowing blood and into surrounding tissue. Nanomedicine (Lond) 5:1459–66.
  • Nacev A, Beni C, Bruno O, et al. (2011). The Behaviors of Ferro-Magnetic Nano-Particles In and Around Blood Vessels under Applied Magnetic FieldsThe behaviors of ferromagnetic nano-particles in and around blood vessels under applied magnetic fields. J Magn Magn Mater 323:651–68.
  • Nacev A, Komaee A, Sarwar A, et al. (2012). Towards control of magnetic fluids in patients: directing therapeutic nanoparticles to disease locations. IEEE Control Syst 32:32–74.
  • Nocedal J, Wright S. (2006). Numerical optimization. Berlin (Germany): Springer Science & Business Media.
  • Pankhurst QA, Connolly J, Jones SK, Dobson J. (2003). Applications of magnetic nanoparticles in biomedicine. J Phys D Appl Phys 36:R167–R181.
  • Pankhurst QA, Thanh NTK, Jones SK, Dobson J. (2009). Progress in applications of magnetic nanoparticles in biomedicine. J Phys D: Appl Phys 42:224001.
  • Pedlosky J. (2013). Geophysical fluid dynamics. Berlin (Germany): Springer Science & Business Media.
  • Price PM, Mahmoud WE, Al-Ghamdi AA, Bronstein LM. (2018). Magnetic drug delivery: Where the field is going. Front Chem 6:619.
  • Probst R, Lin J, Komaee A, et al. (2011). Planar steering of a single ferrofluid drop by optimal minimum power dynamic feedback control of four electromagnets at a distance. J Magn Magn Mater 323:885–96.
  • Radon P, Löwa N, Gutkelch D, et al. (2017). Design and characterization of a device to quantify the magnetic drug targeting efficiency of magnetic nanoparticles in a tube flow phantom by magnetic particle spectroscopy. J Magn Magn Mater 427:175–80.
  • Rotariu O, Strachan NJ. (2005). Modelling magnetic carrier particle targeting in the tumor microvasculature for cancer treatment. J Magn Magn Mater 293:639–46.
  • Roux J-N. (1992). Brownian particles at different times scales: a new derivation of the Smoluchowski equation. Physica A 188:526–52.
  • Schilders W, Van der Vorst H, Rommes J. (2008). Model order reduction: theory, research aspects and applications. Vol. 13, New York (NY): Springer, 13.
  • Schmidt A. (2014). Direct methods for pde-constrained optimization using derivative-extended pod reduced-order models [Ph.D. dissertation].
  • Shapiro B, Kulkarni S, Nacev A, et al. (2015). Open challenges in magnetic drug targeting. Wiley Interdiscip Rev Nanomed Nanobiotechnol 7:446–57.
  • Shapiro B. (2009). Towards dynamic control of magnetic fields to focus magnetic carriers to targets deep inside the body. J Magn Magn Mater 321:1594–9.
  • Simpson JC, Lane JE, Immer CD, Youngquist RC. (2001). Simple analytic expressions for the magnetic field of a circular current loop. Tech Rep: 1–3.
  • Smythe W. (1967). Static and dynamic electricity, 3rd ed. New York (NY): McGraw-Hill.
  • Stokes GG. (1851). On the effect of the internal friction of fluids on the motion of pendulums. Vol. 9, Cambridge (UK): Pitt Press Cambridge.
  • Takayasu M, Gerber R, Friedlaender F. (1983). Magnetic separation of submicron particles. IEEE Trans Magn 19:2112–4.
  • Tehrani MD, Yoon J-H, Kim MO, et al. (2015). A novel scheme for nanoparticle steering in blood vessels using a functionalized magnetic field. IEEE Trans Biomed Eng 62:303–13.
  • Volkwein S. (2013). Proper orthogonal decomposition: theory and reduced-order modelling. Lecture Notes, University of Konstanz, 4, 1–29.
  • Wang N-HL, Keller K. (1985). Augmented transport of extracellular solutes in concentrated erythrocyte suspensions in Couette flow. J Colloid Interface Sci 103:210–25.
  • Widder K, Senyei A, Ranney D. (1980). In vitro release of biologically active adriamycin by magnetically responsive albumin microspheres. Cancer Research 40:3512–7.
  • Wiekhorst F, Steinhoff U, Eberbeck D, et al. (2012). Magnetorelaxometry assisting biomedical applications of magnetic nanoparticles. Pharm Res 29:1189–202.