7,155
Views
53
CrossRef citations to date
0
Altmetric
RESEARCH ARTICLE

Progress in the development of stabilization strategies for nanocrystal preparations

, , , &
Pages 19-36 | Received 12 Oct 2020, Accepted 23 Nov 2020, Published online: 18 Dec 2020

References

  • Afolabi A, Akinlabi O, Bilgili E. (2014). Impact of process parameters on the breakage kinetics of poorly water-soluble drugs during wet stirred media milling: a microhydrodynamic view. Eur J Pharm Sci 51:75–86.
  • Ahire E, Thakkar S, Darshanwad M, et al. (2018). Parenteral nanosuspensions: a brief review from solubility enhancement to more novel and specific applications. Acta Pharm Sin B 8:733–55.
  • Alexis F, Pridgen E, Molnar LK, et al. (2008). Factors affecting the clearance and biodistribution of polymeric nanoparticles. Mol Pharm 5:505–15.
  • Anhalt K, Geissler S, Harms M, et al. (2012). Development of a new method to assess nanocrystal dissolution based on light scattering. Pharm Res 29:2887–901.
  • Bao Y, Zhang Q, Wu W. (2017). Evaluation method and application of correlation in vitro and in vivo. Chin J Pharm 48:638–43.
  • Barle EL, Cerne M, Peternel L, et al. (2013). Reduced intravenous toxicity of amiodarone nanosuspension in mice and rats. Drug Chem Toxicol 36:263–9.
  • Bartos C, Szabó-Révész P, Bartos C, et al. (2016). The effect of an optimized wet milling technology on the crystallinity, morphology and dissolution properties of micro- and nanonized meloxicam. Molecules 21:507
  • Bartzoka ED, Lange H, Mosesso P, et al. (2017). Synthesis of nano- and microstructures from proanthocyanidins, tannic acid and epigallocatechin-3-O-gallate for active delivery. Green Chem 19:5074–91.
  • Berre FL, Chauveteau G, Pefferkorn E. (1998). Perikinetic and orthokinetic aggregation of hydrated colloids. J Colloid Interface Sci 199:1–12.
  • Bhakay A, Azad M, Bilgili E, et al. (2014). Redispersible fast dissolving nanocomposite microparticles of poorly water-soluble drugs. Int J Pharm 461:367–79.
  • Bhakay A, Davé R, Bilgili E. (2013). Recovery of BCS Class II drugs during aqueous redispersion of core–shell type nanocomposite particles produced via fluidized bed coating. Powder Technol 236:221–34.
  • Bilgili E, Afolabi A. (2012). A combined microhydrodynamics-polymer adsorption analysis for elucidation of the roles of stabilizers in wet stirred media milling. Int J Pharm 439:193–206.
  • Cai H, Dai X, Wang X, et al. (2020). A nanostrategy for efficient imaging-guided antitumor therapy through a stimuli-responsive branched polymeric prodrug. Adv Sci (Weinh) 7:1903243.
  • Cerdeira AM, Mazzotti M, Gander B. (2010). Miconazole nanosuspensions: influence of formulation variables on particle size reduction and physical stability. Int J Pharm 396:210–8.
  • Chan HK, Kwok PC. (2011). Production methods for nanodrug particles using the bottom-up approach. Adv Drug Deliv Rev 63:406–16.
  • Chaubal MV, Popescu C. (2008). Conversion of nanosuspensions into dry powders by spray drying: a case study. Pharm Res 25:2302–8.
  • Chen K, Liao S, Guo S, et al. (2020). Multistimuli-responsive PEGylated polymeric bioconjugate-based nano-aggregate for cancer therapy. Chem Eng J 391:123543.
  • Choi JY, Park CH, Lee J. (2008). Effect of polymer molecular weight on nanocomminution of poorly soluble drug. Drug Deliv 15:347–53.
  • Choi JY, Yoo JY, Kwak H-S, et al. (2005). Role of polymeric stabilizers for drug nanocrystal dispersions. Curr Appl Phys 5:472–4.
  • Crisp MT, Tucker CJ, Rogers TL, et al. (2007). Turbidimetric measurement and prediction of dissolution rates of poorly soluble drug nanocrystals. J Control Release 117:351–9.
  • Dai W-G, Dong LC, Song Y-Q. (2007). Nanosizing of a drug/carrageenan complex to increase solubility and dissolution rate. Int J Pharm 342:201–7.
  • Dan J, Ma Y, Yue P, et al. (2016). Microcrystalline cellulose-carboxymethyl cellulose sodium as an effective dispersant for drug nanocrystals: a case study. Carbohydr Polym 136:499–506.
  • Deng J, Huang L, Liu F. (2010). Understanding the structure and stability of paclitaxel nanocrystals. Int J Pharm 390:242–9.
  • Doyle WM. (1992). Principles and applications of fourier transform infrared (FTIR) process analysis. Process Control Qual 2:11–41.
  • Du J, Li X, Zhao H, et al. (2015). Nanosuspensions of poorly water-soluble drugs prepared by bottom-up technologies. Int J Pharm 495:738–49.
  • Ferrar JA, Sellers BD, Chan C, et al. (2020). Towards an improved understanding of drug excipient interactions to enable rapid optimization of nanosuspension formulations. Int J Pharm 578:119094.
  • Gao Y, Li ZG, Sun M, et al. (2011). Preparation and characterization of intravenously injectable curcumin nanosuspension. Drug Deliv 18:131–42.
  • Geng T, Banerjee P, Lu Z, et al. (2017). Comparative study on stabilizing ability of food protein, non-ionic surfactant and anionic surfactant on BCS type II drug carvedilol loaded nanosuspension: physicochemical and pharmacokinetic investigation. Eur J Pharm Sci 109:200–8.
  • George M, Ghosh I. (2013). Identifying the correlation between drug/stabilizer properties and critical quality attributes (CQAs) of nanosuspension formulation prepared by wet media milling technology. Eur J Pharm Sci 48:142–52.
  • Ghosh I, Bose S, Vippagunta R, et al. (2011). Nanosuspension for improving the bioavailability of a poorly soluble drug and screening of stabilizing agents to inhibit crystal growth. Int J Pharm 409:260–8.
  • Ghosh I, Schenck D, Bose S, et al. (2012). Optimization of formulation and process parameters for the production of nanosuspension by wet media milling technique: effect of Vitamin E TPGS and nanocrystal particle size on oral absorption. Eur J Pharm Sci 47:718–28.
  • Gol D, Thakkar S, Misra M. (2018). Nanocrystal-based drug delivery system of risperidone: lyophilization and characterization. Drug Dev Ind Pharm 44:1458–66.
  • Gong X, Wang Y, Kuang T. (2017). ZIF-8-based membranes for carbon dioxide capture and separation. ACS Sustainable Chem Eng 5:11204–14.
  • Gonzalez-Garcia I, Mangas-Sanjuan V, Merino-Sanjuan M, et al. (2015). In vitro-in vivo correlations: general concepts, methodologies and regulatory applications. Drug Dev Ind Pharm 41:1935–47.
  • Gora S, Mustafa G, Sahni JK, et al. (2016). Nanosizing of valsartan by high pressure homogenization to produce dissolution enhanced nanosuspension: pharmacokinetics and pharmacodyanamic study. Drug Deliv 23:940–50.
  • Guo Y, Wang Y, Xu L. (2015). Enhanced bioavailability of rebamipide nanocrystal tablets: formulation and in vitro/in vivo evaluation. Asian J Pharm Sci 10:223–9.
  • Harris KR. (2009). The fractional Stokes–Einstein equation: application to Lennard-Jones, molecular, and ionic liquidsa. J Chem Phys 131:1165.
  • He S, Yang H, Zhang R, et al. (2015). Preparation and in vitro-in vivo evaluation of teniposide nanosuspensions. Int J Pharm 478:131–7.
  • He W, Lu Y, Qi J, et al. (2013). Food proteins as novel nanosuspension stabilizers for poorly water-soluble drugs. Int J Pharm 441:269–78.
  • Ho H, Lee J. (2012). Redispersible drug nanoparticles prepared without dispersant by electro-spray drying. Drug Dev Ind Pharm 38:744–51.
  • Hong C, Dang Y, Lin G, et al. (2014). Effects of stabilizing agents on the development of myricetin nanosuspension and its characterization: an in vitro and in vivo evaluation. Int J Pharm 477:251–60.
  • Hui W, Pan Q, Rempel GL. (2011). Micellar nucleation differential microemulsion polymerization. Eur Polym J 47:973–80.
  • Imono M, Uchiyama H, Yoshida S, et al. (2020). The elucidation of key factors for oral absorption enhancement of nanocrystal formulations: in vitro-in vivo correlation of nanocrystals. Eur J Pharm Biopharm 146:84–92.
  • Jablonka L, Ashtikar M, Gao G, et al. (2019). Advanced in silico modeling explains pharmacokinetics and biodistribution of temoporfin nanocrystals in humans. J Control Release 308:57–70.
  • Jermain SV, Brough C, Williams RO, 3rd. (2018). Amorphous solid dispersions and nanocrystal technologies for poorly water-soluble drug delivery – an update. Int J Pharm 535:379–92.
  • Jog R, Burgess DJ. (2019). Comprehensive quality by design approach for stable nanocrystalline drug products. Int J Pharm 564:426–60.
  • Kakran M, Shegokar R, Sahoo NG, et al. (2012). Long-term stability of quercetin nanocrystals prepared by different methods. J Pharm Pharmacol 64:1394–402.
  • Kalvakuntla S, Deshpande M, Attari Z, et al. (2016). Preparation and characterization of nanosuspension of aprepitant by H96 process. Adv Pharm Bull 6:83–90.
  • Karakucuk A, Celebi N, Teksin ZS. (2016). Preparation of ritonavir nanosuspensions by microfluidization using polymeric stabilizers: I. A design of experiment approach. Eur J Pharm Sci 95:111–21.
  • Karakucuk A, Teksin ZS, Eroglu H, et al. (2019). Evaluation of improved oral bioavailability of ritonavir nanosuspension. Eur J Pharm Sci 131:153–8.
  • Keck CM. (2010). Particle size analysis of nanocrystals: improved analysis method. Int J Pharm 390:3–12.
  • Knieke C, Azad MA, Davé RN, et al. (2013). A study of the physical stability of wet media-milled fenofibrate suspensions using dynamic equilibrium curves. Chem Eng Res Des 91:1245–58.
  • Knieke C, Azad MA, To D, et al. (2015). Sub-100 micron fast dissolving nanocomposite drug powders. Powder Technol 271:49–60.
  • Kumar S, Burgess DJ. (2014). Wet milling induced physical and chemical instabilities of naproxen nano-crystalline suspensions. Int J Pharm 466:223–32.
  • Kumar S, Gokhale R, Burgess DJ. (2014). Sugars as bulking agents to prevent nano-crystal aggregation during spray or freeze-drying. Int J Pharm 471:303–11.
  • Kumar S, Shen J, Zolnik B, et al. (2015). Optimization and dissolution performance of spray-dried naproxen nano-crystals. Int J Pharm 486:159–66.
  • Kumar S, Xu X, Gokhale R, et al. (2014). Formulation parameters of crystalline nanosuspensions on spray drying processing: a DoE approach. Int J Pharm 464:34–45.
  • Kurakula M, El-Helw AM, Sobahi TR, et al. (2015). Chitosan based atorvastatin nanocrystals: effect of cationic charge on particle size, formulation stability, and in-vivo efficacy. Int J Nanomedicine 10:321–34.
  • Lee J, Choi JY, Park CH. (2008). Characteristics of polymers enabling nano-comminution of water-insoluble drugs. Int J Pharm 355:328–36.
  • Lee J, Lee SJ, Choi JY, et al. (2005). Amphiphilic amino acid copolymers as stabilizers for the preparation of nanocrystal dispersion. Eur J Pharm Sci 24:441–9.
  • Li X, Gu L, Xu Y, et al. (2009). Preparation of fenofibrate nanosuspension and study of its pharmacokinetic behavior in rats. Drug Dev Ind Pharm 35:827–33.
  • Lindfors L, Skantze P, Skantze U, et al. (2007). Amorphous drug nanosuspensions. 3. Particle dissolution and crystal growth. Langmuir 23:9866–74.
  • Litou C, Patel N, Turner DB, et al. (2019). Combining biorelevant in vitro and in silico tools to simulate and better understand the in vivo performance of a nano-sized formulation of aprepitant in the fasted and fed states. Eur J Pharm Sci 138:105031.
  • Liu P, Rong X, Laru J, et al. (2011). Nanosuspensions of poorly soluble drugs: preparation and development by wet milling. Int J Pharm 411:215–22.
  • Liu T, Yu X, Yin H. (2020). Study of top-down and bottom-up approaches by using design of experiment (DoE) to produce meloxicam nanocrystal capsules. AAPS PharmSciTech 21:79.
  • Liu YF, Wang YJ, Zhou YM, et al. (2019). Advances in the study of drug release in vitro and in vivo correlation evaluation in nano drug delivery system. China Pharm 30:548–53.
  • Lo CL, Lin SJ, Tsai HC, et al. (2009). Mixed micelle systems formed from critical micelle concentration and temperature-sensitive diblock copolymers for doxorubicin delivery. Biomaterials 30:3961–70.
  • Luo RF, Lin MS, Zhang C, et al. (2020). Genipin-crosslinked human serum albumin coating using a tannic acid layer for enhanced oral administration of curcumin in the treatment of ulcerative colitis. Food Chem 330:127241.
  • Martínez NA, Fernández-Álvarez F, Delgado ÁV, et al. (2020). First steps in the formulation of praziquantel nanosuspensions for pharmaceutical applications. Pharm Dev Technol 25:892–8.
  • McKee J, Rabinow B, Cook C, et al. (2010). Nanosuspension formulation of itraconazole eliminates the negative inotropic effect of SPORANOX in dogs. J Med Toxicol 6:331–6.
  • Medarević D, Ibrić S, Vardaka E, et al. (2020). Insight into the formation of glimepiride nanocrystals by wet media milling. Pharmaceutics 12:53.
  • Medarević D, Djuriš J, Ibrić S, et al. (2018). Optimization of formulation and process parameters for the production of carvedilol nanosuspension by wet media milling. Int J Pharm 540:150–61.
  • Milewski M, Yerramreddy TR, Ghosh P, et al. (2010). In vitro permeation of a pegylated naltrexone prodrug across microneedle-treated skin. J Control Release 146:37–44.
  • Möschwitzer JP. (2013). Drug nanocrystals in the commercial pharmaceutical development process. Int J Pharm 453:142–56.
  • Niwa T, Miura S, Danjo K. (2011). Design of dry nanosuspension with highly spontaneous dispersible characteristics to develop solubilized formulation for poorly water-soluble drugs. Pharm Res 28:2339–49.
  • Nothnagel L, Wacker MG. (2018). How to measure release from nanosized carriers? Eur J Pharm Sci 120:199–211.
  • Oktay AN, Ilbasmis-Tamer S, Celebi N. (2019). The effect of critical process parameters of the high pressure homogenization technique on the critical quality attributes of flurbiprofen nanosuspensions. Pharm Dev Technol 24:1278–86.
  • Oktay AN, Ilbasmis-Tamer S, Karakucuk A, et al. (2020). Screening of stabilizing agents to optimize flurbiprofen nanosuspensions using experimental design. J Drug Deliv Sci Technol 57:101690.
  • Oktay AN, Karakucuk A, Ilbasmis-Tamer S, et al. (2018). Dermal flurbiprofen nanosuspensions: optimization with design of experiment approach and in vitro evaluation. Eur J Pharm Sci 122:254–63.
  • Pan D, Zheng X, Zhang Q, et al. (2020). Dendronized-polymer disturbing cells’ stress protection by targeting metabolism leads to tumor vulnerability. Adv Mater 32:e1907490.
  • Pardeike J, Müller RH. (2010). Nanosuspensions: a promising formulation for the new phospholipase A2 inhibitor PX-18. Int J Pharm 391:322–9.
  • Parmentier J, Tan EH, Low A, et al. (2017). Downstream drug product processing of itraconazole nanosuspension: Factors influencing drug particle size and dissolution from nanosuspension-layered beads. Int J Pharm 524:443–53.
  • Pasquali RC, Taurozzi MP, Bregni C. (2008). Some considerations about the hydrophilic-lipophilic balance system. Int J Pharm 356:44–51.
  • Patel PJ, Gajera BY, Dave RH. (2018). A quality-by-design study to develop Nifedipine nanosuspension: examining the relative impact of formulation variables, wet media milling process parameters and excipient variability on drug product quality attributes. Drug Dev Ind Pharm 44:1942–52.
  • Peltonen L, Hirvonen J. (2010). Pharmaceutical nanocrystals by nanomilling: critical process parameters, particle fracturing and stabilization methods. J Pharm Pharmacol 62:1569–79.
  • Pi J, Wang S, Li W, et al. (2019). A nano-cocrystal strategy to improve the dissolution rate and oral bioavailability of baicalein. Asian J Pharm Sci 14:154–64.
  • Pyo SM, Hespeler D, Keck CM, et al. (2017). Dermal miconazole nitrate nanocrystals – formulation development, increased antifungal efficacy & skin penetration. Int J Pharm 531:350–9.
  • Rachmawati H, Rahma A, Al Shaal L, et al. (2016). Destabilization mechanism of ionic surfactant on curcumin nanocrystal against electrolytes. Sci Pharm 84:685–93.
  • Rangel-Yagui CO, Pessoa A, Jr., Tavares LC. (2005). Micellar solubilization of drugs. J Pharm Pharm Sci 8:147–65.
  • Rettig H, Mysicka J. (2008). IVIVC: Methods and applications in modified-release product development. Dissolution Technol 15:6–8.
  • Roos C, Dahlgren D, Sjogren E, et al. (2018). Jejunal absorption of aprepitant from nanosuspensions: role of particle size, prandial state and mucus layer. Eur J Pharm Biopharm 132:222–30.
  • Salazar J, Ghanem A, Muller RH, et al. (2012). Nanocrystals: comparison of the size reduction effectiveness of a novel combinative method with conventional top-down approaches. Eur J Pharm Biopharm 81:82–90.
  • Salazar J, Müller RH, Möschwitzer JP. (2013). Application of the combinative particle size reduction technology H 42 to produce fast dissolving glibenclamide tablets. Eur J Pharm Sci 49:565–77.
  • Sauron R, Wilkins M, Jessent V, et al. (2006). Absence of a food effect with a 145 mg nanoparticle fenofibrate tablet formulation. Int J Clin Pharmacol Ther 44:64–70.
  • Shah SMH, Ullah F, Khan S, et al. (2017). Fabrication and evaluation of smart nanocrystals of artemisinin for antimalarial and antibacterial efficacy. Afr J Tradit Complement Altern Med 14:251–62.
  • Shi HQG, Farber L, Michaels JN, et al. (2003). Characterization of crystalline drug nanoparticles using atomic force microscopy and complementary techniques. Pharm Res 20:479–84.
  • Sievens-Figueroa L, Pandya N, Bhakay A, et al. (2012). Using USP I and USP IV for discriminating dissolution rates of nano- and microparticle-loaded pharmaceutical strip-films. AAPS PharmSciTech 13:1473–82.
  • Singare DS, Marella S, Gowthamrajan K, et al. (2010). Optimization of formulation and process variable of nanosuspension: an industrial perspective. Int J Pharm 402:213–20.
  • Singh SK, Srinivasan KK, Gowthamarajan K, et al. (2011). Investigation of preparation parameters of nanosuspension by top-down media milling to improve the dissolution of poorly water-soluble glyburide. Eur J Pharm Biopharm 78:441–6.
  • Singh SK, Vaidya Y, Gulati M, et al. (2016). Nanosuspension: principles, perspectives and practices. Curr Drug Deliv 13:1222–46.
  • Su JQ, Guo Q, Chen YL, et al. (2020). Utilization of beta-lactoglobulin- (-)-Epigallocatechin-3-gallate(EGCG) composite colloidal nanoparticles as stabilizers for lutein pickering emulsion. Food Hydrocoll 98:105293.
  • Teeranachaideekul V, Junyaprasert VB, Souto EB, et al. (2008). Development of ascorbyl palmitate nanocrystals applying the nanosuspension technology. Int J Pharm 354:227–34.
  • Toziopoulou F, Malamatari M, Nikolakakis I, et al. (2017). Production of aprepitant nanocrystals by wet media milling and subsequent solidification. Int J Pharm 533:324–34.
  • Tuomela A, Hirvonen J, Peltonen L. (2016). Stabilizing agents for drug nanocrystals: effect on bioavailability. Pharmaceutics 8:16.
  • Van Eerdenbrugh B, Froyen L, Van Humbeeck J, et al. (2008). Drying of crystalline drug nanosuspensions-the importance of surface hydrophobicity on dissolution behavior upon redispersion. Eur J Pharm Sci 35:127–35.
  • Van Eerdenbrugh B, Van den Mooter G, Augustijns P. (2008). Top-down production of drug nanocrystals: nanosuspension stabilization, miniaturization and transformation into solid products. Int J Pharm 364:64–75.
  • Van Eerdenbrugh B, Vermant J, Martens JA, et al. (2009). A screening study of surface stabilization during the production of drug nanocrystals. J Pharm Sci 98:2091–103.
  • Verma S, Gokhale R, Burgess DJ. (2009). A comparative study of top-down and bottom-up approaches for the preparation of micro/nanosuspensions. Int J Pharm 380:216–22.
  • Verma S, Huey BD, Burgess DJ. (2009). Scanning probe microscopy method for nanosuspension stabilizer selection. Langmuir 25:12481–7.
  • Verma S, Kumar S, Gokhale R, et al. (2011). Physical stability of nanosuspensions: investigation of the role of stabilizers on Ostwald ripening. Int J Pharm 406:145–52.
  • Wang Y, Gong X. (2017a). Special oleophobic and hydrophilic surfaces: approaches, mechanisms, and applications. J Mater Chem A 5:3759–73.
  • Wang Y, Gong X. (2017b). Superhydrophobic coatings with periodic ring structured patterns for self-cleaning and oil-water separation. Adv Mater Interfaces 4:1700190.
  • Wang Y, Liu Z, Zhang D, et al. (2011). Development and in vitro evaluation of deacety mycoepoxydiene nanosuspension. Colloids Surf B Biointerfaces 83:189–97.
  • Wang Y, Zheng Y, Zhang L, et al. (2013). Stability of nanosuspensions in drug delivery. J Control Release 172:1126–41.
  • Wei Q, Keck CM, Muller RH. (2018). Solidification of hesperidin nanosuspension by spray drying optimized by design of experiment (DoE). Drug Dev Ind Pharm 44:1–12.
  • Xia D, Cui F, Piao H, et al. (2010). Effect of crystal size on the in vitro dissolution and oral absorption of nitrendipine in rats. Pharm Res 27:1965–76.
  • Xie Y, Ma Y, Xu J, et al. (2016). Panax notoginseng saponins as a novel nature stabilizer for poorly soluble drug nanocrystals: a case study with baicalein. Molecules 21:1149.
  • Xie YB, Yue PF, Dan JX, et al. (2016). Research progress of in vitro release evaluation methods for nano preparation. Chin Pharmaceutical J 51:861–6.
  • Yue PF, Li G, Dan JX, et al. (2014). Study on formability of solid nanosuspensions during solidification: II novel roles of freezing stress and cryoprotectant property. Int J Pharm 475:35–48.
  • Yue PF, Li Y, Wan J, et al. (2013). Study on formability of solid nanosuspensions during nanodispersion and solidification: I. Novel role of stabilizer/drug property. Int J Pharm 454:269–77.
  • Zhai Z, Xu P, Yao J, et al. (2020). Erythrocyte-mimicking paclitaxel nanoparticles for improving biodistributions of hydrophobic drugs to enhance antitumor efficacy. Drug Deliv 27:387–99.
  • Zhang D, Tan T, Gao L, et al. (2007). Preparation of azithromycin nanosuspensions by high pressure homogenization and its physicochemical characteristics studies. Drug Dev Ind Pharm 33:569–75.
  • Zhang H, Meng Y, Wang X, et al. (2014). Pharmaceutical and pharmacokinetic characteristics of different types of fenofibrate nanocrystals prepared by different bottom-up approaches. Drug Deliv 21:588–94.
  • Zhang X, Wu Y, Li Z, et al. (2020). Glycodendron/pyropheophorbide-a (Ppa)-functionalized hyaluronic acid as a nanosystem for tumor photodynamic therapy. Carbohydr Polym 247:116749.
  • Zhang XY, Li Q, Sun JX, et al. (2014). Influences of nanometer effects on the characters of water-insoluble drug aprepitant in vivo and in vitro. Chin Pharmaceutical J 49:1226–32.
  • Zhou Y, Du J, Wang L, et al. (2016). State of the art of nanocrystals technology for delivery of poorly soluble drugs. J Nanopart Res 18:257.
  • Zuo B, Sun Y, Li H, et al. (2013). Preparation and in vitro/in vivo evaluation of fenofibrate nanocrystals. Int J Pharm 455:267–75.
  • Zwanzig R, Harrison AK. (1985). Modifications of the Stokes–Einstein formula. J Chem Phys 83:5861–2.