6,243
Views
22
CrossRef citations to date
0
Altmetric
RESEARCH ARTICLE

The optimized drug delivery systems of treating cancer bone metastatic osteolysis with nanomaterials

ORCID Icon, , , , , & show all
Pages 37-53 | Received 12 Oct 2020, Accepted 23 Nov 2020, Published online: 18 Dec 2020

References

  • Abadeer NS, Murphy CJ. (2016). Recent progress in cancer thermal therapy using gold nanoparticles. J Phys Chem C 120:4691–716.
  • Adjei IM, Sharma B, Peetla C, et al. (2016). Inhibition of bone loss with surface-modulated, drug-loaded nanoparticles in an intraosseous model of prostate cancer. J Controlled Release 232:83–92.
  • Ahangar P, Akoury E, Luna ASRG, et al. (2018). Nanoporous 3D-printed scaffolds for local doxorubicin delivery in bone metastases secondary to prostate cancer. Materials 11:1485.
  • Ahangar P, Aziz M, Rosenzweig DH, et al. (2019). Advances in personalized treatment of metastatic spine disease. Ann Transl Med 7:223.
  • Aluri S, Janib SM, Mackay JA. (2009). Environmentally responsive peptides as anticancer drug carriers. Adv Drug Deliv Rev 61:940–52.
  • An SB, Han F, Hu YH, et al. (2018). Curcumin inhibits polyethylene-induced osteolysis via repressing NF-κB signaling pathway activation. Cell Physiol Biochem 50:1100–12.
  • Andrade K, Fornetti J, Zhao L, et al. (2017). RON kinase: a target for treatment of cancer-induced bone destruction and osteoporosis. Sci Transl Med 9:eaai9338.
  • Assaraf YG, Leamon CP, Reddy JA. (2014). The folate receptor as a rational therapeutic target for personalized cancer treatment. Drug Resist Updat 17:89–95.
  • Au KM, Satterlee A, Min Y, et al. (2016). Folate-targeted pH-responsive calcium zoledronate nanoscale metal-organic frameworks: turning a bone antiresorptive agent into an anticancer therapeutic. Biomaterials 82:178–93.
  • Bai S-b, Liu D-z, Cheng Y, et al. (2019). Osteoclasts and tumor cells dual targeting nanoparticle to treat bone metastases of lung cancer. Nanomed-Nanotechnol Biol Med 21:102054.
  • Bellavia D, Raimondi L, Costa V, et al. (2018). Engineered exosomes: a new promise for the management of musculoskeletal diseases. Biochim Biophys Acta Gen Subj 1862:1893–901.
  • Chang Q, Geng R, Wang S, et al. (2016). DOPA-based paclitaxel-loaded liposomes with modifications of transferrin and alendronate for bone and myeloma targeting. Drug Deliv 23:3629–38.
  • Chen S, Boda SK, Batra SK, et al. (2018). Emerging roles of electrospun nanofibers in cancer research. Adv Healthcare Mater 7:1701024.
  • Chen L, He W, Jiang H, et al. (2019). In vivo SELEX of bone targeting aptamer in prostate cancer bone metastasis model. Int J Nanomedicine 14:149–59.
  • Chen SH, Liu TI, Chuang CL, et al. (2020). Alendronate/folic acid-decorated polymeric nanoparticles for hierarchically targetable chemotherapy against bone metastatic breast cancer. J Mater Chem B 8:3789–800.
  • Chen JQ, Ning CY, Zhou ZN, et al. (2019). Nanomaterials as photothermal therapeutic agents. Prog Mater Sci 99:1–26.
  • Chen XH, Pei Z, Peng H, et al. (2018). Exploring the molecular mechanism associated with breast cancer bone metastasis using bioinformatic analysis and microarray genetic interaction network. Medicine 97:e12032.
  • Chen Z, Wang Z, Gu Z. (2019). Bioinspired and biomimetic nanomedicines. Acc Chem Res 52:1255–64.
  • Chen C, Yue D, Lei L, et al. (2018). Promoter-operating targeted expression of gene therapy in cancer: current stage and prospect. Mol Ther Nucleic Acids 11:508–14.
  • Chew SA, Danti S. (2017). Biomaterial-based implantable devices for cancer therapy. Adv Healthcare Mater 6:1600766.
  • Chu W, Huang Y, Yang C, et al. (2017). Calcium phosphate nanoparticles functionalized with alendronate-conjugated polyethylene glycol (PEG) for the treatment of bone metastasis. Int J Pharm 516:352–63.
  • Chu C, Ren E, Zhang Y, et al. (2019). Zinc(II)-dipicolylamine coordination nanotheranostics: toward synergistic nanomedicine by combined photo/gene therapy. Angew Chem Int Ed Engl 58:269–72.
  • Croucher PI, McDonald MM, Martin TJ. (2016). Bone metastasis: the importance of the neighbourhood. Nat Rev Cancer 16:373–86.
  • Cruz-Neves S, Ribeiro N, Graca I, et al. (2017). Behavior of prostate cancer cells in a nanohydroxyapatite/collagen bone scaffold. J Biomed Mater Res A 105:2035–46.
  • Danaei M, Dehghankhold M, Ataei S, et al. (2018). Impact of particle size and polydispersity index on the clinical applications of lipidic nanocarrier systems. Pharmaceutics 10:57.
  • De Felice M, Lambert D, Holen I, et al. (2016). Effects of Src-kinase inhibition in cancer-induced bone pain. Mol Pain 12:174480691664372.
  • de Miguel L, Noiray M, Surpateanu G, et al. (2014). Poly(γ-benzyl-L-glutamate)-PEG-alendronate multivalent nanoparticles for bone targeting. Int J Pharm 460:73–82.
  • Ding W, Li Y, Hou X, et al. (2016). Bleomycin A6-loaded anionic liposomes with in situ gel as a new antitumoral drug delivery system. Drug Deliv 23:88–94.
  • Dlamini N, Mukaya HE, Van Zyl RL, et al. (2019). Synthesis, characterization, kinetic drug release and anticancer activity of bisphosphonates multi-walled carbon nanotube conjugates. Mater Sci Eng C-Mater Biol Appl 104:109967.
  • Do AV, Khorsand B, Geary SM, et al. (2015). 3D printing of scaffolds for tissue regeneration applications. Adv Healthc Mater 4:1742–62.
  • Dosio F, Arpicco S, Stella B, et al. (2016). Hyaluronic acid for anticancer drug and nucleic acid delivery. Adv Drug Deliv Rev 97:204–36.
  • Duong LT, Wesolowski GA, Leung P, et al. (2014). Efficacy of a cathepsin K inhibitor in a preclinical model for prevention and treatment of breast cancer bone metastasis. Mol Cancer Ther 13:2898–909.
  • Ell B, Mercatali L, Ibrahim T, et al. (2013). Tumor-induced osteoclast miRNA changes as regulators and biomarkers of osteolytic bone metastasis. Cancer Cell 24:542–56.
  • Feng M-X, Hong J-X, Wang Q, et al. (2016). Dihydroartemisinin prevents breast cancer-induced osteolysis via inhibiting both breast caner cells and osteoclasts. Sci Rep 6:19074.
  • Feng S, Wu Z-X, Zhao Z, et al. (2019). Engineering of bone- and CD44-dual-targeting redox-sensitive liposomes for the treatment of orthotopic osteosarcoma. ACS Appl Mater Interfaces 11:7357–68.
  • Fitzgerald KA, Guo J, Raftery RM, et al. (2016). Nanoparticle-mediated siRNA delivery assessed in a 3D co-culture model simulating prostate cancer bone metastasis. Int J Pharm 511:1058–69.
  • Forte L, Torricelli P, Boanini E, et al. (2017). Quercetin and alendronate multi-functionalized materials as tools to hinder oxidative stress damage. J Biomed Mater Res A 105:3293–303.
  • Futakuchi M, Fukamachi K, Suzui M. (2016). Heterogeneity of tumor cells in the bone microenvironment: mechanisms and therapeutic targets for bone metastasis of prostate or breast cancer. Adv Drug Deliv Rev 99:206–11.
  • Gdowski AS, Lampe JB, Lin VJT, et al. (2019). Bioinspired nanoparticles engineered for enhanced delivery to the bone. ACS Appl Nano Mater 2:6249–57.
  • Gdowski AS, Ranjan A, Sarker MR, et al. (2017). Bone-targeted cabazitaxel nanoparticles for metastatic prostate cancer skeletal lesions and pain. Nanomedicine 12:2083–95.
  • Ge YW, Feng K, Liu XL, et al. (2020). Quercetin inhibits macrophage polarization through the p-38α/β signalling pathway and regulates OPG/RANKL balance in a mouse skull model. J Cell Mol Med 24:3203–16.
  • George A, Shah PA, Shrivastav PS. (2019). Natural biodegradable polymers based nano-formulations for drug delivery: a review. Int J Pharm 561:244–64.
  • Gilam A, Conde J, Weissglas-Volkov D, et al. (2016). Local microRNA delivery targets palladin and prevents metastatic breast cancer. Nat Commun 7:12868.
  • Ginn SL, Amaya AK, Alexander IE, et al. (2018). Gene therapy clinical trials worldwide to 2017: an update. J Gene Med 20:e3015.
  • Gul G, Sendur MAN, Aksoy S, et al. (2016). A comprehensive review of denosumab for bone metastasis in patients with solid tumors. Curr Med Res Opin 32:133–45.
  • Ha D, Yang NN, Nadithe V. (2016). Exosomes as therapeutic drug carriers and delivery vehicles across biological membranes: current perspectives and future challenges. Acta Pharm Sin B 6:287–96.
  • Hatami E, Nagesh PKB, Chowdhury P, et al. (2019). Development of zoledronic acid-based nanoassemblies for bone-targeted anticancer therapy. ACS Biomater Sci Eng 5:2343–54.
  • Hirano Y, Iwasaki Y. (2017). Bone-specific poly(ethylene sodium phosphate)-bearing biodegradable nanoparticles. Colloids Surf B Biointerfaces 153:104–10.
  • Holzapfel BM, Wagner F, Martine LC, et al. (2016). Tissue engineering and regenerative medicine in musculoskeletal oncology. Cancer Metastasis Rev 35:475–87.
  • Horne AM, Mihov B, Reid IR. (2018). Bone loss after romosozumab/denosumab: effects of bisphosphonates. Calcif Tissue Int 103:55–61.
  • Hsieh C-J, Kuo P-L, Hou M-F, et al. (2015). Wedelolactone inhibits breast cancer-induced osteoclastogenesis by decreasing Akt/mTOR signaling. Int J Oncol 46:555–62.
  • Hu K-f, Kong X-y, Zhong M-c, et al. (2017). Brucine inhibits bone metastasis of breast cancer cells by suppressing jagged1/notch1 signaling pathways. Chin J Integr Med 23:110–16.
  • Irelli A, Cocciolone V, Cannita K, et al. (2016). Bone targeted therapy for preventing skeletal-related events in metastatic breast cancer. Bone 87:169–75.
  • Jain A, Tiwari A, Verma A, et al. (2018). Ultrasound-based triggered drug delivery to tumors. Drug Deliv Transl Res 8:150–64.
  • Jie S, Guo X, Ouyang Z. (2019). Tumor ablation using novel photothermal NaxWO3 nanoparticles against breast cancer osteolytic bone metastasis. Int J Nanomedicine 14:7353–62.
  • Kagiya T. (2015). MicroRNAs and osteolytic bone metastasis: the roles of MicroRNAs in tumor-induced osteoclast differentiation. J Clin Med 4:1741–52.
  • Karimi M, Ghasemi A, Zangabad PS, et al. (2016). Smart micro/nanoparticles in stimulus-responsive drug/gene delivery systems. Chem Soc Rev 45:1457–501.
  • Kaur G, Willsmore T, Gulati K, et al. (2016). Titanium wire implants with nanotube arrays: a study model for localized cancer treatment. Biomaterials 101:176–88.
  • Ke X, Lin W, Li X, et al. (2017). Synergistic dual-modified liposome improves targeting and therapeutic efficacy of bone metastasis from breast cancer. Drug Deliv 24:1680–89.
  • Kim J, Kim J, Jeong C, et al. (2016). Synergistic nanomedicine by combined gene and photothermal therapy. Adv Drug Deliv Rev 98:99–112.
  • Koto K, Murata H, Sawai Y, et al. (2017). Cytotoxic effects of zoledronic acid-loaded hydroxyapatite and bone cement in malignant tumors. Oncol Lett 14:1648–56.
  • Kozusko SD, Riccio C, Goulart M, et al. (2018). Chitosan as a bone scaffold biomaterial. J Craniofac Surg 29:1788–93.
  • Kwakwa KA, Sterling JA. (2017). Integrin alpha v beta 3 signaling in tumor-induced bone disease. Cancers 9:84.
  • Lee E-U, Lim H-C, Hong J-Y, et al. (2016). Bone regenerative efficacy of biphasic calcium phosphate collagen composite as a carrier of rhBMP-2. Clin Oral Implants Res 27:e91–9.
  • Lee SK, Park K-K, Kim H-J, et al. (2015). Platycodin D blocks breast cancer-induced bone destruction by inhibiting osteoclastogenesis and the growth of breast cancer cells. Cell Physiol Biochem 36:1809–20.
  • Li J, Feng W, Lu H, et al. (2019). Artemisinin inhibits breast cancer-induced osteolysis by inhibiting osteoclast formation and breast cancer cell proliferation. J Cell Physiol 234:12663–75.
  • Li Z, Xiao J, Wu X, et al. (2012). Plumbagin inhibits breast tumor bone metastasis and osteolysis by modulating the tumor-bone microenvironment. Curr Mol Med 12:967–81.
  • Li C, Zhang Y, Chen G, et al. (2017). Engineered multifunctional nanomedicine for simultaneous stereotactic chemotherapy and inhibited osteolysis in an orthotopic model of bone metastasis. Adv Mater 29:1605754.
  • Lima AC, Ferreira H, Reis RL, et al. (2019). Biodegradable polymers: an update on drug delivery in bone and cartilage diseases. Expert Opin Drug Deliv 16:795–813.
  • Lipton A, Fizazi K, Stopeck AT, et al. (2016). Effect of denosumab versus zoledronic acid in preventing skeletal-related events in patients with bone metastases by baseline characteristics. Eur J Cancer 53:75–83.
  • Liu YJ, Bhattarai P, Dai ZF, et al. (2019). Photothermal therapy and photoacoustic imaging via nanotheranostics in fighting cancer. Chem Soc Rev 48:2053–108.
  • Liu Y-Q, Hong Z-L, Zhan L-B, et al. (2016). Wedelolactone enhances osteoblastogenesis by regulating Wnt/beta-catenin signaling pathway but suppresses osteoclastogenesis by NF-kappa B/c-fos/NFATc1 pathway. Sci Rep 6:32260.
  • Liu T, Romanova S, Wang S, et al. (2019). Alendronate-modified polymeric micelles for the treatment of breast cancer bone metastasis. Mol Pharm 16:2872–83.
  • Liu D, Yang F, Xiong F, et al. (2016). The smart drug delivery system and its clinical potential. Theranostics 6:1306–23.
  • Liu Y, Zhang R-X, Yuan W, et al. (2018). Knockdown of bone morphogenetic proteins type 1a receptor (BMPR1a) in breast cancer cells protects bone from breast cancer-induced osteolysis by suppressing RANKL expression. Cell Physiol Biochem 45:1759–71.
  • Lu X, Mu E, Wei Y, et al. (2011). VCAM-1 promotes osteolytic expansion of indolent bone micrometastasis of breast cancer by engaging α4β1-positive osteoclast progenitors . Cancer Cell 20:701–14.
  • Lu X, Wang QQ, Hu GH, et al. (2009). ADAMTS1 and MMP1 proteolytically engage EGF-like ligands in an osteolytic signaling cascade for bone metastasis. Genes & Development 23:1882–94.
  • Luo KW, Ko CH, Yue GGL, et al. (2015). The combined use of Camellia sinensis and metronomic zoledronic acid in a breast cancer-induced osteolysis mouse model. J Cancer Res Clin Oncol 141:1025–36.
  • Ma GT, Lee SK, Park K-K, et al. (2018). Artemisinin-daumone hybrid inhibits cancer cell-mediated osteolysis by targeting cancer cells and osteoclasts. Cell Physiol Biochem 49:1460–75.
  • Macedo F, Ladeira K, Pinho F, et al. (2017). Bone metastases: an overview. Oncol Rev 11:321.
  • Martin V, Bettencourt A. (2018). Bone regeneration: biomaterials as local delivery systems with improved osteoinductive properties. Mater Sci Eng C Mater Biol Appl 82:363–71.
  • Müller W, Neufurth M, Wang S, et al. (2018). Amorphous, smart, and bioinspired polyphosphate nano/microparticles: a biomaterial for regeneration and repair of osteo-articular impairments in-situ. IJMS 19:427.
  • Newman MR, Benoit DSW. (2016). Local and targeted drug delivery for bone regeneration. Curr Opin Biotechnol 40:125–32.
  • Nooh A, Zhang YL, Sato D, et al. (2017). Intra-tumor delivery of zoledronate mitigates metastasis-induced osteolysis superior to systemic administration. J Bone Oncol 6:8–15.
  • Norouzi M, Nazari B, Miller DW. (2016). Injectable hydrogel-based drug delivery systems for local cancer therapy. Drug Discov Today 21:1835–49.
  • O’Carrigan B, Wong MHF, Willson ML, et al. (2017). Bisphosphonates and other bone agents for breast cancer. Coch Datab System Rev 2:CD003474.
  • Oledzka E, Pachowska D, Orłowska K, et al. (2017). Pamidronate-conjugated biodegradable branched copolyester carriers: synthesis and characterization. Molecules 22:1063.
  • Olthof MGL, Kempen DHR, Herrick JL, et al. (2018). Effect of different sustained bone morphogenetic protein-2 release kinetics on bone formation in poly(propylene fumarate) scaffolds. J Biomed Mater Res B Appl Biomater 106:477–87.
  • Palamà IE, Arcadio V, D’Amone S, et al. (2017). Therapeutic PCL scaffold for reparation of resected osteosarcoma defect. Sci Rep 7:12672.
  • Perez-Herrero E, Fernandez-Medarde A. (2015). Advanced targeted therapies in cancer: drug nanocarriers, the future of chemotherapy. Eur J Pharm Biopharm 93:52–79.
  • Pore SK, Hahm E-R, Latoche JD, et al. (2018). Prevention of breast cancer-induced osteolytic bone resorption by benzyl isothiocyanate. Carcinogenesis 39:134–45.
  • Posadowska U, Parizek M, Filova E, et al. (2015). Injectable nanoparticle-loaded hydrogel system for local delivery of sodium alendronate. Int J Pharm 485:31–40.
  • Probert C, Dottorini T, Speakman A, et al. (2019). Communication of prostate cancer cells with bone cells via extracellular vesicle RNA; a potential mechanism of metastasis. Oncogene 38:1751–63.
  • Qiao H, Cui Z, Yang S, et al. (2017). Targeting osteocytes to attenuate early breast cancer bone metastasis by theranostic upconversion nanoparticles with responsive plumbagin release. ACS Nano 11:7259–73.
  • Rahmanian M, Naghib SM, Seyfoori A, et al. (2017). Tricalcium phosphate nanostructures loaded with bisphosphonate as potential anticancer agents. J Ceramic Sci Technol 8:505–12.
  • Rahmanian M, Seyfoori A, Dehghan MM, et al. (2019). Multifunctional gelatin-tricalcium phosphate porous nanocomposite scaffolds for tissue engineering and local drug delivery: in vitro and in vivo studies. J Taiwan Inst Chem Eng 101:214–20.
  • Robert J, Reinhold WC. (2015). Bisphosphonates as new anticancer agents? Bull Cancer 102:297–99.
  • Ross MH, Esser AK, Fox GC, et al. (2017). Bone-induced expression of integrin β3 enables targeted nanotherapy of breast cancer metastases. Cancer Res 77:6299–312.
  • Rudnick-Glick S, Corem-Salkmon E, Grinberg I, et al. (2016). Targeted drug delivery of near IR fluorescent doxorubicin-conjugated poly(ethylene glycol) bisphosphonate nanoparticles for diagnosis and therapy of primary and metastatic bone cancer in a mouse model. J Nanobiotechnol 14:80.
  • Ryu T-K, Kang R-H, Jeong K-Y, et al. (2016). Bone-targeted delivery of nanodiamond-based drug carriers conjugated with alendronate for potential osteoporosis treatment. J Control Release 232:152–60.
  • Santini D, Galluzzo S, Zoccoli A, et al. (2010). New molecular targets in bone metastases. Cancer Treat Rev 36:S6–S10.
  • Santini D, Stumbo L, Spoto C, et al. (2015). Bisphosphonates as anticancer agents in early breast cancer: preclinical and clinical evidence. Breast Cancer Res 17:121.
  • Saracino R, Luciano R, Battafarano G, et al. (2016). Nanoparticles-based treatment for bone metastasis. Curr Drug Targets 17:303–10.
  • Saravanakumar G, Kim J, Kim WJ. (2017). Reactive-oxygen-species-responsive drug delivery systems: promises and challenges. Adv Sci 4:1600124.
  • Sarigol-Calamak E, Hascicek C. (2018). Tissue scaffolds as a local drug delivery system for bone regeneration. In: Chun HJ, Park CH, Kwon IK, Khang G, eds. Cutting-edge enabling technologies for regenerative medicine. Singapore, Singapore: Springer, 475–93.
  • Sethi N, Dai XD, Winter CG, et al. (2011). Tumor-derived jagged1 promotes osteolytic bone metastasis of breast cancer by engaging notch signaling in bone cells. Cancer Cell 19:192–205.
  • Shupp AB, Kolb AD, Mukhopadhyay D, et al. (2018). Cancer metastases to bone: concepts, mechanisms, and interactions with bone osteoblasts. Cancers 10:182.
  • Song R, Murphy M, Li CS, et al. (2018). Current development of biodegradable polymeric materials for biomedical applications. Drug Des Devel Ther 12:3117–45.
  • Stapleton M, Sawamoto K, Almeciga-Diaz CJ, et al. (2017). Development of bone targeting drugs. IJMS 18:1345.
  • Stopeck AT, Fizazi K, Body JJ, et al. (2016). Safety of long-term denosumab therapy: results from the open label extension phase of two phase 3 studies in patients with metastatic breast and prostate cancer. Support Care Cancer 24:447–55.
  • Stopeck AT, Lipton A, Body J-J, et al. (2010). Denosumab compared with zoledronic acid for the treatment of bone metastases in patients with advanced breast cancer: a randomized, double-blind study. J Clin Oncol 28:5132–39.
  • Strazic-Geljic I, Guberovic I, Didak B, et al. (2016). Gallium, a promising candidate to disrupt the vicious cycle driving osteolytic metastases. Biochem Pharmacol 116:11–21.
  • Suk JS, Xu QG, Kim N, et al. (2016). PEGylation as a strategy for improving nanoparticle-based drug and gene delivery. Adv Drug Deliv Rev 99:28–51.
  • Sun Y, Chen YY, Ma XY, et al. (2016). Mitochondria-targeted hydroxyapatite nanoparticles for selective growth inhibition of lung cancer in vitro and in vivo. ACS Appl Mater Interfaces 8:25680–90.
  • Sun W, Ge K, Jin Y, et al. (2019). Bone-targeted nanoplatform combining zoledronate and photothermal therapy to treat breast cancer bone metastasis. ACS Nano 13:7556–67.
  • Sun W, Han Y, Li Z, et al. (2016). Bone-targeted mesoporous silica nanocarrier anchored by zoledronate for cancer bone metastasis. Langmuir 32:9237–44.
  • Sun X, Zhang J, Wang Z, et al. (2019). Licorice isoliquiritigenin-encapsulated mesoporous silica nanoparticles for osteoclast inhibition and bone loss prevention. Theranostics 9:5183–99.
  • Tan L-L, Song N, Zhang SX-A, et al. (2016). Ca2+, pH and thermo triple-responsive mechanized Zr-based MOFs for on-command drug release in bone diseases. J Mater Chem B 4:135–40.
  • Tang A, Qian Y, Liu S, et al. (2016). Self-assembling bisphosphonates into nanofibers to enhance their inhibitory capacity on bone resorption. Nanoscale 8:10570–75.
  • Thummuri D, Jeengar MK, Shrivastava S, et al. (2015). Thymoquinone prevents RANKL-induced osteoclastogenesis activation and osteolysis in an in vivo model of inflammation by suppressing NF-KB and MAPK Signalling. Pharmacol Res 99:63–73.
  • Turpin A, Duterque-Coquillaud M, Vieillard M-H. (2020). Bone metastasis: current state of play. Transl Oncol 13:308–20.
  • Ulbrich K, Hola K, Subr V, et al. (2016). Targeted drug delivery with polymers and magnetic nanoparticles: covalent and noncovalent approaches, release control, and clinical studies. Chem Rev 116:5338–431.
  • Vanderburgh J, Hill JL, Gupta MK, et al. (2020). Tuning ligand density to optimize pharmacokinetics of targeted nanoparticles for dual protection against tumor-induced bone destruction. Acs Nano 14:311–27.
  • Vanderburgh JP, Kwakwa KA, Werfel TA, et al. (2019). Systemic delivery of a Gli inhibitor via polymeric nanocarriers inhibits tumor-induced bone disease. J Controlled Release 311-312:257–72.
  • Vinay R, KusumDevi V. (2016). Potential of targeted drug delivery system for the treatment of bone metastasis. Drug Deliv 23:21–9.
  • Wang M, Cai X, Yang J, et al. (2018). A targeted and pH-responsive bortezomib nanomedicine in the treatment of metastatic bone tumors. ACS Appl Mater Interfaces 10:41003–11.
  • Wang K, Guo C, Dong X, et al. (2018). In vivo evaluation of reduction-responsive alendronate-hyaluronan-curcumin polymer-drug conjugates for targeted therapy of bone metastatic breast cancer. Mol Pharm 15:2764–69.
  • Wang Y, Huang Q, He X, et al. (2018). Multifunctional melanin-like nanoparticles for bone-targeted chemo-photothermal therapy of malignant bone tumors and osteolysis. Biomaterials 183:10–9.
  • Wang Q, Mo J, Zhao C, et al. (2018). Raddeanin A suppresses breast cancer-associated osteolysis through inhibiting osteoclasts and breast cancer cells. Cell Death Dis 9:376.
  • Wang H, Shen W, Hu X, et al. (2015). Quetiapine inhibits osteoclastogenesis and prevents human breast cancer-induced bone loss through suppression of the RANKL-mediated MAPK and NF-κB signaling pathways . Breast Cancer Res Treat 149:705–14.
  • Wang WY, Sun CX, Mao LK, et al. (2016). The biological activities, chemical stability, metabolism and delivery systems of quercetin: a review. Trends Food Sci Technol 56:21–38.
  • Wang Y, Sun L, Mei Z, et al. (2020). 3D printed biodegradable implants as an individualized drug delivery system for local chemotherapy of osteosarcoma. Mater Des 186:108336.
  • Wang J, Yang G, Guo X, et al. (2014). Redox-responsive polyanhydride micelles for cancer therapy. Biomaterials 35:3080–90.
  • Wang B-K, Yu X-F, Wang J-H, et al. (2016). Gold-nanorods-siRNA nanoplex for improved photothermal therapy by gene silencing. Biomaterials 78:27–39.
  • Wei J, Li M, Wang D, et al. (2017). Overexpression of suppressor of cytokine signaling 3 in dorsal root ganglion attenuates cancer-induced pain in rats. Mol Pain 13:1744806916688901.
  • Wu W, Dai Y, Liu H, et al. (2018). Local release of gemcitabine via in situ UV-crosslinked lipid-strengthened hydrogel for inhibiting osteosarcoma. Drug Deliv 25:1642–51.
  • Wu GY, Fang YZ, Yang S, et al. (2004). Glutathione metabolism and its implications for health. J Nutr 134:489–92.
  • Wu XQ, Li FF, Dang L, et al. (2020). RANKL/RANK system-based mechanism for breast cancer bone metastasis and related therapeutic strategies. Front Cell Dev Biol 8:76.
  • Wu RX, Li Q, Pei XH, et al. (2017). Effects of Brucine on the OPG/RANKL/RANK Signaling Pathway in MDA-MB-231 and MC3T3-E1 Cell Coculture System. Evidence-Based Complementary and Alternative Medicine 2017:1–6.
  • Xue Y, Niu W, Wang M, et al. (2020). Engineering a biodegradable multifunctional antibacterial bioactive nanosystem for enhancing tumor photothermo-chemotherapy and bone regeneration. ACS Nano 14:442–53.
  • Yan Y, Gao X, Zhang S, et al. (2019). A carboxyl-terminated dendrimer enables osteolytic lesion targeting and photothermal ablation of malignant bone tumors. ACS Appl Mater Interfaces 11:160–68.
  • Yang C, Zhu KC, Yuan XW, et al. (2020). Curcumin has immunomodulatory effects on RANKL-stimulated osteoclastogenesis in vitro and titanium nanoparticle-induced bone loss in vivo. J Cell Mol Med 24:1553–67.
  • Yu YX, Hua S, Yang MK, et al. (2016). Fabrication and characterization of electrospinning/3D printing bone tissue engineering scaffold. RSC Adv 6:110557–65.
  • Yuan G, Lian Z, Liu Q, et al. (2019). Phosphatidyl inositol 3-kinase (PI3K)-mTOR inhibitor PKI-402 inhibits breast cancer induced osteolysis. Cancer Lett 443:135–44.
  • Zeng Y, Hoque J, Varghese S. (2019). Biomaterial-assisted local and systemic delivery of bioactive agents for bone repair. Acta Biomater 93:152–68.
  • Zhang LB, Tian ZB, Li W, et al. (2017). Inhibitory effect of quercetin on titanium particle induced endoplasmic reticulum stress related apoptosis and in vivo osteolysis. Bioscience Reports 37:BSR20170961.
  • Zhang K, Zhou Y, Xiao C, et al. (2019). Application of hydroxyapatite nanoparticles in tumor-associated bone segmental defect. Sci Adv 5:eaax6946.
  • Zhang YY, Zou BH, Tan YH, et al. (2019). Sinomenine inhibits osteolysis in breast cancer by reducing IL-8/CXCR1 and c-Fos/NFATc1 signaling. Pharmacol Res 142:140–50.
  • Zhao P-P, Ge Y-W, Liu X-L, et al. (2020). Ordered arrangement of hydrated GdPO4 nanorods in magnetic chitosan matrix promotes tumor photothermal therapy and bone regeneration against breast cancer bone metastases. Chem Eng J 381:122694.
  • Zhao Y-P, Ye W-L, Liu D-Z, et al. (2017). Redox and pH dual sensitive bone targeting nanoparticles to treat breast cancer bone metastases and inhibit bone resorption. Nanoscale 9:6264–77.
  • Zhou YQ, Chen SP, Liu DQ, et al. (2017). The role of spinal GABAB receptors in cancer-induced bone pain in rats. J Pain 18:933–46.
  • Zhou Z, Liu X, Zhu D, et al. (2017). Nonviral cancer gene therapy: delivery cascade and vector nanoproperty integration. Adv Drug Deliv Rev 115:115–54.
  • Zhu J, Huo Q, Xu M, et al. (2018). Bortezomib-catechol conjugated prodrug micelles: combining bone targeting and aryl boronate-based pH-responsive drug release for cancer bone-metastasis therapy. Nanoscale 10:18387–97.