3,718
Views
2
CrossRef citations to date
0
Altmetric
RESEARCH ARTICLE

L-EGCG-Mn nanoparticles as a pH-sensitive MRI contrast agent

, , , , , , , & show all
Pages 126-135 | Received 22 Oct 2020, Accepted 07 Dec 2020, Published online: 26 Dec 2020

References

  • Adiseshaiah P, Dellinger A, MacFarland D, et al. (2013). A novel gadolinium-based trimetasphere metallofullerene for application as a magnetic resonance imaging contrast agent. Invest Radiol 48:745–54.
  • Bao Y, Yin M, Hu X, et al. (2016). A safe, simple and efficient doxorubicin prodrug hybrid micelle for overcoming tumor multidrug resistance and targeting delivery. J Control Release 235:182–94.
  • Cai X, Gao W, Ma M, et al. (2015). A Prussian Blue-based core–shell hollow-structured mesoporous nanoparticle as a smart theranostic agent with ultrahigh pH-responsive longitudinal relaxivity. Adv Mater 27:6382–9.
  • Calcagno V, Vecchione R, Quagliariello V, et al. (2019). Oil core–PEG shell nanocarriers for in vivo MRI imaging. Adv Healthc Mater 8:e1801313.
  • Chang CH, Qiu J, O'Sullivan D, et al. (2015). Metabolic competition in the tumor microenvironment is a driver of cancer progression. Cell 162:1229–41.
  • Chen Y, Ye D, Wu M, et al. (2014). Break-up of two-dimensional MnO2 nanosheets promotes ultrasensitive pH-triggered theranostics of cancer. Adv Mater 26:7019–26.
  • Chen Y, Yin Q, Ji X, et al. (2012). Manganese oxide-based multifunctionalized mesoporous silica nanoparticles for pH-responsive MRI, ultrasonography and circumvention of MDR in cancer cells. Biomaterials 33:7126–37.
  • Dekkers IA, Roos R, van der Molen AJ. (2018). Gadolinium retention after administration of contrast agents based on linear chelators and the recommendations of the European Medicines Agency. Eur Radiol 28:1579–84.
  • Dubbelboer IR, Pavlovic N, Heindryckx F, et al. (2019). Liver cancer cell lines treated with doxorubicin under normoxia and hypoxia: cell viability and oncologic protein profile. Cancers 11:1024.
  • Erstad DJ, Ramsay IA, Jordan VC, et al. (2019). Tumor contrast enhancement and whole-body elimination of the manganese-based magnetic resonance imaging contrast agent Mn-PyC3A. Investig Radiol 54:697–703.
  • Fries P, Muller A, Seidel R, et al. (2015). P03277—a new approach to achieve high-contrast enhancement: initial results of an experimental extracellular gadolinium-based magnetic resonance contrast agent. Investig Radiol 50:835–42.
  • Fu C, Duan X, Cao M, et al. (2019). Targeted magnetic resonance imaging and modulation of hypoxia with multifunctional hyaluronic acid-MnO2 nanoparticles in glioma. Adv Healthcare Mater 8:e1900047.
  • Gale EM, Atanasova IP, Blasi F, et al. (2015). A manganese alternative to gadolinium for MRI contrast. J Am Chem Soc 137:15548–57.
  • Gale EM, Wey HY, Ramsay I, et al. (2018). A manganese-based alternative to gadolinium: contrast-enhanced MR angiography, excretion, pharmacokinetics, and metabolism. Radiology 286:865–72.
  • Gallagher FA, Kettunen MI, Day SE, et al. (2008). Magnetic resonance imaging of pH in vivo using hyperpolarized 13C-labelled bicarbonate. Nature 453:940–3.
  • Garcia-Hevia L, Banobre-Lopez M, Gallo J. (2019). Recent progress on manganese-based nanostructures as responsive MRI contrast agents. Chemistry 25:431–41.
  • Goetschi S, Froehlich JM, Chuck NC, et al. (2014). The protein and contrast agent-specific influence of pathological plasma-protein concentration levels on contrast-enhanced magnetic resonance imaging. Invest Radiol 49:608–19.
  • Grobner T. (2006). Gadolinium—a specific trigger for the development of nephrogenic fibrosing dermopathy and nephrogenic systemic fibrosis? Nephrol Dial Transplant 21:1104–8.
  • Hao DP, Ai T, Goerner F, et al. (2012). MRI contrast agents: basic chemistry and safety. J Magn Reson Imaging 36:1060–71.
  • Huang CC, Khu NH, Yeh CS. (2010a). The characteristics of sub 10 nm manganese oxide T1 contrast agents of different nanostructured morphologies. Biomaterials 31:4073–8.
  • Huang J, Xie J, Chen K, et al. (2010b). HSA coated MnO nanoparticles with prominent MRI contrast for tumor imaging. Chem Commun (Camb) 46:6684–6.
  • Ippolito L, Morandi A, Giannoni E, Chiarugi P. (2019). Lactate: a metabolic driver in the tumour landscape. Trends Biochem Sci 44:153–66.
  • Ji Y, Lu F, Hu W, et al. (2019). Tandem activated photodynamic and chemotherapy: using pH-sensitive nanosystems to realize different tumour distributions of photosensitizer/prodrug for amplified combination therapy. Biomaterials 219:119393
  • Jiang X, Sun Y, Shang L, et al. (2019). Green tea extract-assembled nanoclusters for combinational photothermal and chemotherapy. J Mater Chem B 7:5972–82.
  • Kanamala M, Wilson WR, Yang M, et al. (2016). Mechanisms and biomaterials in pH-responsive tumour targeted drug delivery: a review. Biomaterials 85:152–67.
  • Kim HJ, Yi Y, Kim A, Miyata K. (2018). Small delivery vehicles of siRNA for enhanced cancer targeting. Biomacromolecules 19:2377–90.
  • Kim SM, Im GH, Lee DG, et al. (2013). Mn(2+)-doped silica nanoparticles for hepatocyte-targeted detection of liver cancer in T1-weighted MRI. Biomaterials 34:8941–8.
  • Li B, Gu Z, Kurniawan N, et al. (2017). Manganese-based layered double hydroxide nanoparticles as a T1-MRI contrast agent with ultrasensitive pH response and high relaxivity. Adv Mater 29:1700373.
  • Li J, Chen YC, Tseng YC, et al. (2010). Biodegradable calcium phosphate nanoparticle with lipid coating for systemic siRNA delivery. J Control Release 142:416–21.
  • Li K, Xiao G, Richardson JJ, et al. (2019). Targeted therapy against metastatic melanoma based on self-assembled metal-phenolic nanocomplexes comprised of green tea catechin. Adv Sci (Weinh) 6:1801688.
  • Luo M, Liu Z, Zhang X, et al. (2019). Synergistic STING activation by PC7A nanovaccine and ionizing radiation improves cancer immunotherapy. J Control Release 300:154–60.
  • Marckmann P, Skov L, Rossen K, et al. (2006). Nephrogenic systemic fibrosis: suspected causative role of gadodiamide used for contrast-enhanced magnetic resonance imaging. J Am Soc Nephrol 17:2359–62.
  • Mi P, Kokuryo D, Cabral H, et al. (2016). A pH-activatable nanoparticle with signal-amplification capabilities for non-invasive imaging of tumour malignancy. Nat Nanotechnol 11:724–30.
  • Navarro RE, Santacruz H, Inoue M. (2005). Complexation of epigallocatechin gallate (a green tea extract, EGCG) with Mn2+: nuclear spin relaxation by the paramagnetic ion. J Inorg Biochem 99:584–8.
  • Neri D, Supuran CT. (2011). Interfering with pH regulation in tumours as a therapeutic strategy. Nat Rev Drug Discov 10:767–77.
  • Ogg RJ, Kingsley PB. (2004). Optimized precision of inversion-recovery T1 measurements for constrained scan time. Magn Reson Med 51:625–30.
  • Pan D, Schmieder AH, Wickline SA, Lanza GM. (2011). Manganese-based MRI contrast agents: past, present and future. Tetrahedron 67:8431–44.
  • Peng W, Huang W, Ge X, et al. (2019). Type Igamma phosphatidylinositol phosphate kinase promotes tumor growth by facilitating Warburg effect in colorectal cancer. EBioMedicine 44:375–86.
  • Peng Y, Li Z, Tang H, et al. (2018). Comparison of reduced field-of-view diffusion-weighted imaging (DWI) and conventional DWI techniques in the assessment of rectal carcinoma at 3.0T: image quality and histological T staging. J Magn Reson Imaging 47:967–75.
  • Pilon-Thomas S, Kodumudi KN, El-Kenawi AE, et al. (2016). Neutralization of tumor acidity improves antitumor responses to immunotherapy. Cancer Res 76:1381–90.
  • Pintaske J, Martirosian P, Graf H, et al. (2006). Relaxivity of gadopentetate dimeglumine (Magnevist), gadobutrol (Gadovist), and gadobenate dimeglumine (MultiHance) in human blood plasma at 0.2, 1.5, and 3 Tesla. Invest Radiol 41:213–21.
  • Rahim MA, Bjornmalm M, Bertleff-Zieschang N, et al. (2018). Multiligand metal-phenolic assembly from green tea infusions. ACS Appl Mater Interfaces 10:7632–9.
  • Reddi AR, Jensen LT, Culotta VC. (2009). Manganese homeostasis in Saccharomyces cerevisiae. Chem Rev 109:4722–32.
  • Reygaert WC. (2014). The antimicrobial possibilities of green tea. Front Microbiol 5:434.
  • Reygaert WC. (2018). Green tea catechins: their use in treating and preventing infectious diseases. Biomed Res Int 2018:9105261.
  • Save SN, Choudhary S. (2018). Elucidation of energetics and mode of recognition of green tea polyphenols by human serum albumin. J Mol Liq 265:807–17.
  • Shen Y, Goerner FL, Heverhagen JT, et al. (2019). In vitro T2 relaxivities of the Gd-based contrast agents (GBCAs) in human blood at 1.5 and 3 T. Acta Radiol 60:694–701.
  • Shen Y, Goerner FL, Snyder C, et al. (2015). T1 relaxivities of gadolinium-based magnetic resonance contrast agents in human whole blood at 1.5, 3, and 7 T. Investig Radiol 50:330–8.
  • Shin J, Anisur RM, Ko MK, Im GH, et al. (2009). Hollow manganese oxide nanoparticles as multifunctional agents for magnetic resonance imaging and drug delivery. Angew Chem Int Ed Engl 48:321–4.
  • Swartz MA, Iida N, Roberts EW, et al. (2012). Tumor microenvironment complexity: emerging roles in cancer therapy. Cancer Res 72:2473–80.
  • Tsai LC, Hsieh HY, Lu KY, et al. (2016). EGCG/gelatin-doxorubicin gold nanoparticles enhance therapeutic efficacy of doxorubicin for prostate cancer treatment. Nanomedicine (Lond) 11:9–30.
  • Wang C, Sang H, Wang Y, et al. (2018). Foe to friend: supramolecular nanomedicines consisting of natural polyphenols and bortezomib. Nano Lett 18:7045–51.
  • Wang D, Lin H, Zhang G, et al. (2018). Effective pH-activated theranostic platform for synchronous magnetic resonance imaging diagnosis and chemotherapy. ACS Appl Mater Interfaces 10:31114–23.
  • Xiao L, Mertens M, Wortmann L, et al. (2015). Enhanced in vitro and in vivo cellular imaging with green tea coated water-soluble iron oxide nanocrystals. ACS Appl Mater Interfaces 7:6530–40.
  • Zhang W, Wang G, Xu ZG, et al. (2019). Lactate is a natural suppressor of RLR signaling by targeting MAVS. Cell 178:176–189.e15.
  • Zheng S, Zhang M, Bai H, et al. (2019). Preparation of AS1411 aptamer modified Mn-MoS2 QDs for targeted MR imaging and fluorescence labelling of renal cell carcinoma. Int J Nanomedicine 14:9513–24.
  • Zhuang X, Wu T, Zhao Y, et al. (2016). Lipid-enveloped zinc phosphate hybrid nanoparticles for codelivery of H-2K(b) and H-2D(b)-restricted antigenic peptides and monophosphoryl lipid A to induce antitumor immunity against melanoma. J Control Release 228:26–37.