3,334
Views
18
CrossRef citations to date
0
Altmetric
RESEARCH ARTICLE

Simulating drug penetration during hyperthermic intraperitoneal chemotherapy

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 145-161 | Received 26 Oct 2020, Accepted 07 Dec 2020, Published online: 11 Jan 2021

References

  • Appleton TG. (1997). Donor atom preferences in complexes of platinum and palladium with amino acids and related molecules. Coord Chem Rev 166:313–59.
  • Ash S. (2003). Chronic peritoneal dialysis catheters: overview of design, placement, and removal procedures . Semin Dial 16:323–34.
  • Baxter LT, Jain RK. (1989). Transport of fluid and macromolecules in tumors I. Role of interstitial pressure and convection. Microvasc Res 37:77–104.
  • Baxter LT, Jain RK. (1990). Transport of fluid and macromolecules in tumors. II. Role of heterogeneous perfusion and lymphatics. Microvasc Res 40:246–63.
  • Bergs J, Haveman J, Ten Cate R, et al. (2007). Effect of 41∘c and 43∘c on cisplatin radiosensitization in two human carcinoma cell lines with different sensitivities for cisplatin. Oncol Rep 18:219–26.
  • Bhandari A, Bansal A, Singh A, et al. (2019). Comparison of transport of chemotherapeutic drugs in voxelized heterogeneous model of human brain tumor. Microvasc Res 124:76–90.
  • Bhandari A, Bansal A, Singh A, Sinha N. (2017). Perfusion kinetics in human brain tumor with DCE-MRI derived model and CFD analysis. J Biomech 59:80–9.
  • Bhandari A, Bansal A, Singh A, Sinha N. (2018). Numerical study of transport of anticancer drugs in heterogeneous vasculature of human brain tumors using dynamic contrast enhanced-magnetic resonance imaging. J Biomech Eng 140:051010.
  • Boucher Y, Baxter LT, Jain RK. (1990). Interstitial pressure gradients in tissue-isolated and subcutaneous tumors: implications for therapy. Cancer Res 50:4478–84.
  • Cashin PH, Ehrsson H, Wallin I, et al. (2013). Pharmacokinetics of cisplatin during hyperthermic intraperitoneal treatment of peritoneal carcinomatosis. Eur J Clin Pharmacol 69:533–40.
  • Cavaliere F, De Simone M, Virzì S, et al. (2011). Prognostic factors and oncologic outcome in 146 patients with colorectal peritoneal carcinomatosis treated with cytoreductive surgery combined with hyperthermic intraperitoneal chemotherapy: Italian multicenter study s.i.t.i.l.o. Eur J Surg Oncol 37:148–54.
  • Electricité de France. (2017). Finite element code aster, analysis of structures and thermomechanics for studies and research. Open source. Available from: www.code-aster.org
  • Esquis P, Consolo D, Magnin G, et al. (2006). High intra-abdominal pressure enhances the penetration and antitumor effect of intraperitoneal cisplatin on experimental peritoneal carcinomatosis,. Ann Surg 244:106–12.
  • Facy O, Samman SA, Magnin G, et al. (2012). High pressure enhances the effect of hyperthermia in intraperitoneal chemotherapy with oxaliplatin: an experimental study. Ann Surg 256:1084–8.
  • Franken NAP, Rodermond HM, Stap J, et al. (2006). Clonogenic assay of cells in vitro. Nat Protoc 1:2315–9.
  • Furman M, Picotte R, Wante M, et al. (2014). Higher flow rates improve heating during hyperthermic intraperitoneal chemoperfusion. J Surg Oncol 110:970–5.
  • Hasgall P, Gennaro FD, Baumgartner C, et al. It’is database for thermal and electromagnetic parameters of biological tissues, version 4.0. 2018.
  • Helderman RF, Löke DR, Kok HP, et al. (2019). Variation in clinical application of hyperthermic intraperitoneal chemotherapy: A review. Cancers 11:78.
  • Helderman RF, Löke DR, Verhoeff J, et al. (2020). The temperature-dependent effectiveness of platinum-based drugs mitomycin-c and 5-fu during hyperthermic intraperitoneal chemotherapy (hipec) in colorectal cancer cell lines. Cells 9:1775.
  • Heldin CH, Rubin K, Pietras K, Ostman A. (2004). High interstitial fluid pressure – an obstacle in cancer therapy. Nat Rev Cancer 4:806–13.
  • Huang Y, Alzahrani NA, Chua TC, et al. (2015). Impacts of low peritoneal cancer index on the survival outcomes of patient with peritoneal carcinomatosis of colorectal origin. Int J Surg 23:181–5.
  • Islam T, Hassan SR, Ali M, Islam Q. (2014). Finite volume study of flow separation phenomena for steady flow over a circular cylinder at low reynolds number. Procedia Eng 90:282–7.
  • Kok H, van Straten LK, Bakker A, et al. (2017). Online adaptive hyperthermia treatment planning during locoregional heating to suppress treatment-limiting hot spots. Int J Radiat Oncol Biol Phys 99:1039–47.
  • Kusamura S, Dominique E, Baratti D, et al. (2008). Drugs, carrier solutions and temperature in hyperthermic intraperitoneal chemotherapy. J Surg Oncol 98:247–52.
  • Lang J, Erdmann B, Seebass M. (1999). Impact of nonlinear heat transfer on temperature control in regional hyperthermia. IEEE Trans Biomed Eng 46:1129–38.
  • Lemoine L, Sugarbaker P, der Speeten KV. (2017). Drugs, doses, and durations of intraperitoneal chemotherapy: standardising hipec and epic for colorectal, appendiceal, gastric, ovarian peritoneal surface malignancies and peritoneal mesothelioma. Int J Hyperthermia 33:582–92.
  • Lemoine L, Thijssen E, Carleer R, et al. (2019). Body surface area-based versus concentration-based intraperitoneal perioperative chemotherapy in a rat model of colorectal peritoneal surface malignancy: pharmacologic guidance towards standardization. Oncotarget 10:1407–24.
  • Leonard B. (1979). A stable and accurate convective modelling procedure based on quadratic upstream interpolation. Computer Methods in Applied Mechanics and Engineering 19:59–98.
  • Lunt S, Fyles A, Hill R, Milosevic M. (2008). Interstitial fluid pressure in tumors: therapeutic barrier and biomarker of angiogenesis. Future Oncol 4:793–802.
  • Messori L, Merlino A. (2016). Cisplatin binding to proteins: a structural perspective. Coord Chem Rev 315:67–89.
  • Oei A, Kok H, Oei S, et al. (2020). Molecular and biological rationale of hyperthermia as radio- and chemosensitizer. Adv Drug Delivery Rev 163-164:84–97.
  • OpenFoamWiki. (2020). Available from: https://openfoamwiki.net/index.php/chtmultiregionfoam
  • Overgaard J. (1984). Formula to estimate the thermal enhancement ratio of a single simultaneous hyperthermia and radiation treatment. Acta Radiol Oncol 23:135–9.
  • Panczyk T, Jagusiak A, Pastorin G, et al. (2013). Molecular dynamics study of cisplatin release from carbon nanotubes capped by magnetic nanoparticles,. J Phys Chem C 117:17327–36.
  • Pelz J, Chua T, Esquivel J, et al. (2010). Evaluation of best supportive care and systemic chemotherapy as treatment stratified according to the retrospective peritoneal surface disease severity score (PSDSS) for peritoneal carcinomatosis of colorectal origin. BMC Cancer 10:689.
  • Petrillo M, Zucchetti M, Cianci S, et al. (2019). Pharmacokinetics of cisplatin during open and minimally-invasive secondary cytoreductive surgery plus hipec in women with platinum-sensitive recurrent ovarian cancer: a prospective study. J Gynecol Oncol 30:e59.
  • Piché N, Leblond FA, Sidéris L, et al. (2011). Rationale for heating oxaliplatin for the intraperitoneal treatment of peritoneal carcinomatosis. Ann Surg 254:138–44.
  • Plataniotis GA, Dale RG. (2009). Use of the concept of equivalent biologically effective dose (bed) to quantify the contribution of hyperthermia to local tumor control in radiohyperthermia cervical cancer trials, and comparison with radiochemotherapy results. Int J Radiat Oncol Biol Phys 73:1538–44.
  • Sánchez-García S, Villarejo-Campos P, Padilla-Valverde D, et al. (2016). Intraperitoneal chemotherapy hyperthermia (hipec) for peritoneal carcinomatosis of ovarian cancer origin by fluid and co2 recirculation using the closed abdomen technique (prs-1.0 combat): a clinical pilot study. Int J Hyperthermia 32:488–95.
  • Schlichting H. (1979). Boundary-layer theory. 7th ed. New York (NY): McGraw-Hill Book company.
  • Schooneveldt G, Kok HP, Balidemaj E, et al. (2016). Improving hyperthermia treatment planning for the pelvis by accurate fluid modeling. Med Phys 43:5442.
  • Soltani M, Chen P. (2011). Numerical modeling of fluid flow in solid tumors. PLOS One 6:e20344.
  • Soltani M, Chen P. (2012). Effect of tumor shape and size on drug delivery to solid tumors. J Biol Eng 6:4
  • Steuperaert M, Debbaut C, Carlier C, et al. (2019). A 3d cfd model of the interstitial fluid pressure and drug distribution in heterogeneous tumor nodules during intraperitoneal chemotherapy. Drug Deliv 26:404–15.
  • Steuperaert M, Labate GFD, Debbaut C, et al. (2017). Mathematical modeling of intraperitoneal drug delivery: simulation of drug distribution in a single tumor nodule. Drug Delivery 24:491–501.
  • Tan HL, Chia CS, Tan GHC, et al. (2017). Gastric peritoneal carcinomatosis – a retrospective review. WJGO 9:121–8.
  • Testa U, Petrucci E, Pasquini L, et al. (2018). Ovarian cancers: Genetic abnormalities, tumor heterogeneity and progression, clonal evolution and cancer stem cells. Medicines 5:16.
  • Thomassen I, van Gestel Y, van Ramshorst B, et al. (2014). Peritoneal carcinomatosis of gastric origin: a population-based study on incidence, survival and risk factors. Int J Cancer 134:622–8.
  • Urano M, Ling C. (2002). Thermal enhancement of melphalan and oxaliplatin cytotoxicity in vitro. Int J Hyperthermia 18:307–15.
  • Valvano JW. (2006). Bioheat transfer. In: Webster JG, ed. Encyclopedia of medical devices and instrumentation. New York (NY): Wiley.
  • Weller H, Tabor G, Jasak H, Fureby C. (1998). A tensorial approach to computational continuum mechanics using object-oriented techniques. Comput Phys 12:620–31.
  • Zeitlinger MA, Derendorf H, Mouton JW, et al. (2011). Protein binding: do we ever learn? Antimicrob Agents Chemother 55:3067–74.
  • Zhan W, Xu X. (2013). A mathematical model for thermosensitive liposomal delivery of doxorubicin to solid tumour. J Drug Deliv 2013:172529.