3,291
Views
19
CrossRef citations to date
0
Altmetric
Research Article

Fabrication of silver nanoparticles/gelatin hydrogel system for bone regeneration and fracture treatment

, , , , , & show all
Pages 319-324 | Received 05 Nov 2020, Accepted 23 Dec 2020, Published online: 01 Feb 2021

References

  • Al-Shmgani HSA, Mohammed WH, Sulaiman GM, et al. (2017). Biosynthesis of silver nanoparticles from Catharanthus roseus leaf extract and assessing their antioxidant, antimicrobial, and wound-healing activities. Artif Cells Nanomed Biotechnol 45:1–7.
  • Atiyeh BS, Costagliola M, Hayek SN, et al. (2007). Effect of silver on burn wound infection control and healing: review of the literature. Burns 33:139–48.
  • Balaji M, Jegatheeswaran S, Selvam S, et al. (2018). Highly biological active antibiofilm, anticancer and osteoblast adhesion efficacy from MWCNT/PPy/Pd nanocomposite. Appl Surf Sci 434:400–11.
  • Bhattarai N, Gunn J, Zhang M. (2010). Chitosan-based hydrogels for controlled, localized drug delivery. Adv Drug Deliv Rev 62:83–99.
  • Biffis A, Orlandi N, Corain B. (2003). Microgel‐stabilized metal nanoclusters: Size control by microgel nanomorphology. Adv Mater 15:1551–5.
  • Brennan SA, Ní Fhoghlú C, Devitt BM, et al. (2015). Silver nanoparticles and their orthopaedic applications. Bone Joint J 97-B:582–9.
  • Cai K, Rechtenbach A, Hao J, et al. (2005). Polysaccharide-protein surface modification of titanium via a layer-by-layer technique: characterization and cell behaviour aspects. Biomaterials 26:5960–71.
  • Durán N, Durán M, de Jesus MB, et al. (2016). Silver nanoparticles: A new view on mechanistic aspects on antimicrobial activity. Nanomedicine 12:789–99.
  • Hu Y, Cai K, Luo Z, et al. (2012). TiO2 nanotubes as drug nanoreservoirs for the regulation of mobility and differentiation of mesenchymal stem cells. Acta Biomater 8:439–48.
  • Ismail RA, Sulaiman GM, Mohsin MH, et al. (2018). Preparation of silver iodide nanoparticles using laser ablation in liquid for antibacterial applications. IET Nanobiotechnol 12:781–6.
  • Jegatheeswaran S, Selvam S, Sri Ramkumar V, et al. (2016). Facile green synthesis of silver doped fluor-hydroxyapatite/β-cyclodextrin nanocoposite in the dual acting fluorine-containing ionic liquid medium for bone substitute applications. Appl Surf Sci 371:468–78.
  • Jin B, He J, Yao L, et al. (2017). Rational design and construction of well-organized macro-mesoporous SiO2/TiO2 nanostructure toward robust high-performance self-cleaning antireflective thin films. ACS Appl Mater Interfaces 9:17466−75.
  • Johari N, Hosseini H, Samadikuchaksaraei A. (2018). Novel fluoridated silk fibroin/ TiO2 nanocomposite scaffolds for bone tissue engineering. Mater Sci Eng C Mater Biol Appl 82:265–76.
  • Karpuraranjith M, Thambidurai S. (2016). Twist fibrous structure of CS-SnO2-PANI ternary hybrid composite for electrochemical capacitance performance. RSC Adv 6:40567–76.
  • Khashan K, Sulaiman G, Abdulameer FA, et al. (2014). Synthesis, antibacterial activity of tio2 nanoparticles suspension induced by laser ablation in liquid. Eng Tech J 32:877–84.
  • Khatami M, Pourseyedi S, Khatami M, et al. (2015). Synthesis of silver nanoparticles using seed exudates of Sinapis arvensis as a novel bioresource, and evaluation of their antifungal activity. Bioresour Bioprocess 2:19.
  • Lu Y, Spyra P, Mei Y, et al. (2007). Composite hydrogels: Robust carriers for catalytic nanoparticles. Macromol Chem Phys 208:254–61.
  • Lu Z, Gao J, He Q, et al. (2017). Enhanced antibacterial and wound healing activities of Microporous chitosan-Ag/ZnO composite dressing. Carbohydr Polym 156:460–9.
  • Ma D, Zhang LM. (2008). Reactivity of the Thermally Stable Intermediates of the Reduction of SO3 on carbons and mechanisms of insertion of organic moieties in the carbon matrix. J Phys Chem B 112:6315–25.
  • Mehrabani MG, Karimian R, Mehramouz B, et al. (2018). Preparation of biocompatible and biodegradable silk fibroin/chitin/silver nanoparticles 3D scaffolds as a bandage for antimicrobial wound dressing. Int J Biol Macromol 114:961–71.
  • Mishra M, Kumar H, Tripathi K. (2008). Diabetic delayed wound healing and the role of silver nanoparticles. Dig J Nanomater Biostruct 3:49–54.
  • Nakamura S, Sato M, Sato Y, et al. (2019). Synthesis and application of silver nanoparticles (Ag NPs) for the prevention of infection in healthcare workers. IJMS 20:3620.
  • Pinto J, Magrì D, Valentini P, et al. (2018). Antibacterial melamine foams decorated with in situ synthesized silver nanoparticles. ACS Appl Mater Interfaces 10:16095–104.
  • Selvam S, Balamuralitharan B, Jegatheeswaran S, et al. (2017). Electrolyte-imprinted graphene oxide-chitosan chelate with copper crosslinked composite electrodes for intense cyclic-stable, flexible supercapacitors. J Mater Chem A 5:1380–6.
  • Si S, Zhou R, Xing Z, et al. (2013). A study of hybrid organic/inorganic hydrogel films based on in situ generated TiO2 nanoparticles and methacrylated gelatin. Fibers Polym 14:982–9.
  • Sulaiman G, Mohammad AAW, Abdul-Wahed H, et al. (2012). Biosynthesis, antimicrobial and cytotoxic effects of silver nanoparticles using Rosmarinus officinalis extract. Digest J Nanomater Biostruct 8:273–80.
  • Sulaiman GM, Ali EH, Jabbar II, et al. (2014). Synthesis, characterization, antibacterial and cytotoxic effects of silver nanoparticles. Digest J NanomaterBiostruct 9:787–96.
  • Sulaiman GM, Hussien HT, Saleem MMNM. (2015). Biosynthesis of silver nanoparticles synthesized by Aspergillus flavus and their antioxidant, antimicrobial and cytotoxicity properties. Bull Mater Sci 38:639–44.
  • Taha ZK, Hawar SN, Sulaiman GM. (2019). Extracellular biosynthesis of silver nanoparticles from Penicillium italicum and its antioxidant, antimicrobial and cytotoxicity activities. Biotechnol Lett 41:899–914.
  • Tamuly C, Hazarika M, Borah SC, et al. (2013). In situ biosynthesis of Ag, Au and bimetallic nanoparticles using piper pedicellatum C.DC: Green Chemistry Approach. Colloids Surf B Biointerfaces 102:627–34.
  • Teng D, Wu Z, Zhang X, et al. (2010). Synthesis and characterization of in situ cross-linked hydrogel based on self-assembly of thiol-modified chitosan with PEG diacrylate using Michael type addition. Polymer 51:639–46.
  • Thanh NT, Hieu MH, Phuong NTM, et al. (2018). Optimization and characterization of electrospun polycaprolactone coated with gelatin-silver nanoparticles for wound healing application. Mater Sci Eng C 91:318–29.
  • Tian J, Wong KK, Ho CM, et al. (2007). Topical delivery of silver nanoparticles promotes wound healing. ChemMedChem 2:129–36.
  • Wu ZM, Zhang XG, Zheng C, et al. (2009). Disulfide-crosslinked chitosan hydrogel for cell viability and controlled protein release. Eur J Pharm Sci 37:198–206.
  • Zare E, Pourseyedi S, Khatami M, et al. (2017). Simple biosynthesis of zinc oxide nanoparticles using nature's source, and it's in vitro bio-activity. J Mol Struct 1146:96–103.
  • Zhang Y, Chen L, Liu C, et al. (2016). Self-assembly chitosan/gelatin composite coating on icariin-modified TiO2 nanotubes for the regulation of osteoblast bioactivity. Mater Des 92:471–9.