2,407
Views
24
CrossRef citations to date
0
Altmetric
Research Article

Cubogel as potential platform for glaucoma management

, , &
Pages 293-305 | Received 30 Nov 2020, Accepted 04 Jan 2021, Published online: 29 Jan 2021

References

  • Abdelbary AA, Abd-Elsalam WH, Al-Mahallawi AM. (2016a). Fabrication of novel ultradeformable bilosomes for enhanced ocular delivery of terconazole: in vitro characterization, ex vivo permeation and in vivo safety assessment. Int J Pharm 513:688–96.
  • Abdelbary GA, Amin MM, Abdelmoteleb M. (2016b). Novel mixed hydrotropic solubilization of Zaleplon: Formulation of oral tablets and in-vivo neuropharmacological characterization by monitoring plasma GABA level. J Drug Deliv Sci Technol 33:98–113.
  • Abdelrahman FE, Elsayed I, Gad MK, et al. (2015). Investigating the cubosomal ability for transnasal brain targeting: in vitro optimization, ex vivo permeation and in vivo biodistribution. Int J Pharm 490:281–91.
  • Acharya A, Goudanavar P, Vinay C. (2019). Determination of mucoadhesive behaviour of timolol maleate liquid crystalline cubogel by different techniques. Asian Jour Pharmac Rese 9:7–11.
  • Afify EA, ElSayed I, Gad MK, Afify AE-MM. (2018). Enhanced of pharmacokinetic and pharmacological behaviour of ocular dorzolamide after factorial optimization of self-assembeled nanostructures. ploS one.13.
  • Aggarwal D, Kaur IP. (2005). Improved pharmacodynamics of timolol maleate from a mucoadhesive niosomal ophthalmic drug delivery system. Int J Pharm 290:155–9.
  • Ahmed S, Kassem MA, Sayed S. (2020). Bilosomes as promising nanovesicular carriers for improved transdermal delivery: construction, in vitro optimization, ex vivo permeation and in vivo evaluation. Int J Nanomedicine 15:9783–98.
  • Alharbi KS, Alshehri S, Afzal M, et al. (2020). Formulation of chitosan polymeric vesicles of ciprofloxacin for ocular delivery: box-Behnken optimization. In vitro characterization, HET-CAM irritation, and antimicrobial assessment. AAPS PharmSciTech 21:167.
  • AL-sakini SJ, Maraie NK. (2019). Optimization and in vitro evaluation of the release of class ii drug from its nanocubosomal dispersion. Int J App Pharm 11:86–90.
  • Amal El Sayeh F, El Khatib MM. (2014). Formulation and evaluation of new long acting metoprolol tartrate ophthalmic gels. Saudi Pharm J 22:555–63.
  • Ammar HO, Salama H, Ghorab M, Mahmoud A. (2009). Nanoemulsion as a potential ophthalmic delivery system for dorzolamide hydrochloride. AAPS Pharm Sci 10:808.
  • Anderson DM, Wennerstroem H. (1990). Self-diffusion in bicontinuous cubic phases, L3 phases, and microemulsions. J Phys Chem 94:8683–94.
  • Azhari H, Strauss M, Hook S, Boyd BJ, et al. (2016). Stabilising cubosomes with Tween 80 as a step towards targeting lipid nanocarriers to the blood-brain barrier. Eur J Pharm Biopharm 104:148–55.
  • Bin-Jumah M, Gilani SJ, Jahangir MA, et al. (2020). Clarithromycin-loaded ocular chitosan nanoparticle: formulation, optimization, characterization, ocular irritation, and antimicrobial activity. IJN 15:7861–75.
  • Boia R, Salinas-Navarro M, Gallego-Ortega A, et al. (2020). Activation of adenosine A 3 receptor protects retinal ganglion cells from degeneration induced by ocular hypertension. Cell Death Dis 11:1–12.
  • Carr HS, Wlodkowski TJ, Rosenkranz HS. (1973). Silver sulfadiazine: in vitro antibacterial activity. Antimicrob Agents Chemother 4:585–7.
  • Chandraprakash K, Udupa N, Umadevi P, Pillai G. (1990). Pharmacokinetic evaluation of surfactant vesicle-entrapped methotrexate in tumor-bearing mice. Int J Pharm 61:R1–4.
  • Chong JY, Mulet X, Boyd BJ, Drummond CJ. (2015). Steric stabilizers for cubic phase lyotropic liquid crystal nanodispersions (cubosomes). In: Advances in planar lipid bilayers and liposomes. Waltham, MA: Elsevier, 131–187.
  • Clogston J, Craciun G, Hart D, Caffrey M. (2005). Controlling release from the lipidic cubic phase by selective alkylation. J Control Release 102:441–61.
  • Deng L, Pan X, Zhang Y, et al. (2020). Immunostimulatory potential of MoS2 nanosheets: enhancing dendritic cell maturation, migration and T cell elicitation. Int J Nanomed 15:2971–86.
  • Di Colo G, Burgalassi S, Chetoni P, et al. (2001). Gel-forming erodible inserts for ocular controlled delivery of ofloxacin. Int J Pharm 215:101–11.
  • Draize JH, Woodard G, Calvery HO. (1944). Methods for the study of irritation and toxicity of substances applied topically to the skin and mucous membranes. J Pharmacol Exp Ther 82:377–90.
  • Eldeeb AE, Salah S, Ghorab M. (2019). Formulation and evaluation of cubosomes drug delivery system for treatment of glaucoma: ex-vivo permeation and in-vivo pharmacodynamic study. J Drug Delivery Sci Technol 52:236–47.
  • Elnaggar YS, Etman SM, Abdelmonsif DA, Abdallah OY. (2015). Novel piperine-loaded Tween-integrated monoolein cubosomes as brain-targeted oral nanomedicine in Alzheimer’s disease: pharmaceutical, biological, and toxicological studies. Int J Nanomedicine 10:54–9.
  • Elsayed I, Sayed S. (2017). Tailored nanostructured platforms for boosting transcorneal permeation: Box-Behnken statistical optimization, comprehensive in vitro, ex vivo and in vivo characterization. Int J Nanomed 12:7947–62.
  • Esposito E, Cortesi R, Drechsler M, et al. (2005). Cubosome dispersions as delivery systems for percutaneous administration of indomethacin. Pharm Res 22:2163–73.
  • Esposito E, Eblovi N, Rasi S, et al. (2003). Lipid-based supramolecular systems for topical application: a preformulatory study. AAPS PharmSci 5:62–76.
  • Fouda NH, Abdelrehim RT, Hegazy DA, Habib BA. (2018). Sustained ocular delivery of Dorzolamide-HCl via proniosomal gel formulation: in-vitro characterization, statistical optimization, and in-vivo pharmacodynamic evaluation in rabbits. Drug Deliv 25:1340–9.
  • Gaballa SA, El Garhy OH, Abdelkader H. (2019). Cubosomes: composition, preparation, and drug delivery applications. J Adv Biomed Pharm Sci 0:0–9.
  • Ganem-Quintanar A, Quintanar-Guerrero D, Buri P. (2000). Monoolein: a review of the pharmaceutical applications. Drug Dev Ind Pharm 26:809–20.
  • Gudmundsdottir BS, Petursdottir D, Asgrimsdottir GM, et al. (2014). γ-Cyclodextrin nanoparticle eye drops with dorzolamide: effect on intraocular pressure in man. J Ocular Pharmacol Ther 30:35–41.
  • Hakeem EA, El-Mahrouk GM, Abdelbary G, Teaima MH. (2020). Freeze-dried clopidogrel loaded lyotropic liquid crystal: box-Behnken optimization, in-vitro and in-vivo evaluation. Curr Drug Deliv 17:207–17.
  • Hashem F, Nasr M, Youssif M. (2018). Formulation and characterization of cubosomes containing REB for improvement of oral absorption of the drug in human volunteers. J Adv Pharm 2:95–103.
  • He H, Rahimi K, Zhong M, et al. (2017). Cubosomes from hierarchical self-assembly of poly(ionic liquid) block copolymers. Nat Commun 8:14057–8.
  • Huang J, Peng T, Li Y, et al. (2017). Ocular cubosome drug delivery system for timolol maleate: preparation, characterization, cytotoxicity, ex vivo, and in vivo evaluation. AAPS PharmSciTech 18:2919–26.
  • Hundekar YR, Saboji J, Patil S, Nanjwade B. (2014). Preparation and evaluation of diclofenac sodium cubosomes for percutaneous administration. World J Pharm Pharm Sci 3:523–39.
  • Jin X, Zhang Z-h, Li S-l, et al. (2013). A nanostructured liquid crystalline formulation of 20(S)-protopanaxadiol with improved oral absorption . Fitoterapia 84:64–71.
  • Kamel AO, Awad GA, Geneidi AS, Mortada ND. (2009). Preparation of intravenous stealthy acyclovir nanoparticles with increased mean residence time. AAPS Pharm Sci 10:1427.
  • Kancharla S, Zoyhofski NA, Bufalini L, et al. (2020). Association between nonionic amphiphilic polymer and ionic surfactant in aqueous solutions: effect of polymer hydrophobicity and micellization. Polymers 12:1831.
  • Karami Z, Hamidi M. (2016). Cubosomes: remarkable drug delivery potential. Drug Discov Today 21:789–801.
  • Katiyar S, Pandit J, Mondal RS, et al. (2014). In situ gelling dorzolamide loaded chitosan nanoparticles for the treatment of glaucoma. Carbohydr Polym 102:117–24.
  • Kouchak M, Malekahmadi M, Bavarsad N, et al. (2018). Dorzolamide nanoliposome as a long action ophthalmic delivery system in open angle glaucoma and ocular hypertension patients. Drug Dev Ind Pharm 44:1239–42.
  • Kulkarni CV, Wachter W, Iglesias-Salto G, et al. (2011). Monoolein: a magic lipid? Phys Chem Chem Phys 13:3004–21.
  • Maltese A, Bucolo C. (2002). Rapid high‐performance liquid chromatographic assay of dorzolamide in rabbit aqueous humor. Biomed Chromatogr 16:274–6.
  • Marinho R, Horiuchi L, Pires CA. (2018). Effect of stirring speed on conversion and time to particle stabilization of poly (vinyl chloride) produced by suspension polymerization process at the beginning of reaction. Braz J Chem Eng 35:631–40.
  • Masson V, Maurin F, Fessi H, Devissaguet J. (1997). Influence of sterilization processes on poly(epsilon-caprolactone) nanospheres. Biomaterials 18:327–35.
  • Matloub AA, AbouSamra MM, Salama AH, Rizk MZ, et al. (2018). Cubic liquid crystalline nanoparticles containing a polysaccharide from Ulva fasciata with potent antihyperlipidaemic activity. Saudi Pharm J 26:224–31.
  • Mohyeldin SM, Mehanna MM, Elgindy NA. (2016). Superiority of liquid crystalline cubic nanocarriers as hormonal transdermal vehicle: comparative human skin permeation-supported evidence. Expert Opin Drug Deliv 13:1049–64.
  • Montis C, Castroflorio B, Mendozza M, et al. (2015). Magnetocubosomes for the delivery and controlled release of therapeutics. J Colloid Interface Sci 449:317–26.
  • Morsi NM, Abdelbary GA, Ahmed MA. (2014). Silver sulfadiazine based cubosome hydrogels for topical treatment of burns: development and in vitro/in vivo characterization. Eur J Pharm Biopharm 86:178–89.
  • Murgia S, Falchi AM, Meli V, et al. (2015). Cubosome formulations stabilized by a dansyl-conjugated block copolymer for possible nanomedicine applications. Colloids Surf B Biointerfaces 129:87–94.
  • Nagayasu A, Uchiyama K, Kiwada H. (1999). The size of liposomes: a factor which affects their targeting efficiency to tumors and therapeutic activity of liposomal antitumor drugs. Adv Drug Deliv Rev 40:75–87.
  • Nasr M, Ghorab MK, Abdelazem A. (2015). In vitro and in vivo evaluation of cubosomes containing 5-fluorouracil for liver targeting. Acta Pharm Sin B 5:79–88.
  • Nikouei BM, Vahabzadeh SA, Mohajeri SA. (2013). Preparation of a molecularly imprinted soft contact lens as a new ocular drug delivery system for dorzolamide. Curr Drug Deliv 10:279–85.
  • Öhnell H, Bengtsson B, Heijl A. (2019). Making a correct diagnosis of glaucoma: data from the EMGT. J Glaucoma 28:859–64.
  • Pal SL, Jana U, Manna PK, et al. (2011). Nanoparticle: an overview of preparation and characterization. J Appl Pharm Sci 1:228–34.
  • Rajani T, Mahesh G, Reddy BCS. (2020). Formulation and evaluation of dexamethasone loaded cubosomes. Rese Jour of Pharm and Technol 13:709–14.
  • Rao SV, Sravya BN, Padmalatha K. (2018). A review on cubosome: the novel drug delivery system. GSC Biol Pharm Sci 5:076–81.
  • Rizwan SB, Boyd BJ. (2015). Cubosomes: structure, preparation and use as an antigen delivery system. In: Subunit vaccine delivery. New York, NY: Springer, 125–40.
  • Ruckmani K, Sankar V, Sivakumar M. (2010). Tissue distribution, pharmacokinetics and stability studies of zidovudine delivered by niosomes and proniosomes. J Biomed Nanotechnol 6:43–51.
  • Salah S, Mahmoud AA, Kamel AO. (2017). Etodolac transdermal cubosomes for the treatment of rheumatoid arthritis: ex vivo permeation and in vivo pharmacokinetic studies. Drug Deliv 24:846–56.
  • Salama AH, Shamma RN. (2015). Tri/tetra-block co-polymeric nanocarriers as a potential ocular delivery system of lornoxicam: in-vitro characterization, and in-vivo estimation of corneal permeation. Int J Pharm 492:28–39.
  • Sarfraz M, Rehman N, Mohsin S. (2006). Naproxen release from sustained release matrix system and effect of cellulose derivatives. Pak J Pharm Sci 19:251–5.
  • Sayed S, Abdelmoteleb M, Amin MM, Khowessah OM. (2020). Effect of formulation variables and gamma sterilization on transcorneal permeation and stability of proniosomal gels as ocular platforms for antiglaucomal drug. AAPS Pharm Sci 21:87.
  • Sayed S, Elsayed I, Ismail MM. (2018). Optimization of β-cyclodextrin consolidated micellar dispersion for promoting the transcorneal permeation of a practically insoluble drug. Int J Pharm 549:249–60.
  • Shahab MS, Rizwanullah M, Alshehri S, Imam SS. (2020). Optimization to development of chitosan decorated polycaprolactone nanoparticles for improved ocular delivery of dorzolamide: in vitro, ex vivo and toxicity assessments. Int J Biol Macromol 163:2392–404.
  • Shamma RN, Elsayed I. (2013). Transfersomal lyophilized gel of buspirone HCl: formulation, evaluation and statistical optimization. J Liposome Res 23:244–54.
  • Shamma RN, Sayed S, Sabry NA, El-Samanoudy SI. (2019). Enhanced skin targeting of retinoic acid spanlastics: in vitro characterization and clinical evaluation in acne patients. J Liposome Res 29:283–90.
  • Sheybani A, Scott R, Samuelson TW, et al. (2020). Open-angle glaucoma: burden of illness, current therapies, and the management of nocturnal IOP variation. Ophthalmol Ther 9:1–14.
  • Subara D, Jaswir I, Alkhatib MFR, Noorbatcha IA. (2018). Synthesis of fish gelatin nanoparticles and their application for the drug delivery based on response surface methodology. Adv Nat Sci: Nanosci Nanotechnol 9:045014.
  • Thomas L, Viswanad V. (2012). Formulation and optimization of clotrimazole-loaded proniosomal gel using 32 factorial design. Sci Pharm 80:731–48.
  • Wadhwa K, Sharma C, Goswami M, Thakur N. (2019). Formulation and evaluation of pH triggered in-situ ocular gel of ofloxacin. Int J Pharm Sci 10:4507–12.
  • Weyenberg W, Vermeire A, Vandervoort J, et al. (2005). Effects of roller compaction settings on the preparation of bioadhesive granules and ocular minitablets. Eur J Pharm Biopharm 59:527–36.
  • Younes NF, Abdel-Halim SA, Elassasy AI. (2018). Corneal targeted Sertaconazole nitrate loaded cubosomes: preparation, statistical optimization, in vitro characterization, ex vivo permeation and in vivo studies. Int J Pharm 553:386–97.
  • Yu-Jie M, Jian-Bing W, Ze-Qiu Y, et al. (2020). Nitric oxide donating anti-glaucoma drugs: advances and prospects. Chin J Nat Med 18:275–83.