2,602
Views
10
CrossRef citations to date
0
Altmetric
RESEARCH ARTICLE

Theoretical model for the diclofenac release from PEGylated chitosan hydrogels

, , , , , , & show all
Pages 261-271 | Received 28 Oct 2020, Accepted 11 Jan 2021, Published online: 27 Jan 2021

References

  • Agop M, Ioannou P, Nica P, et al. (2004). Fractal characteristics of the solidification process. Mater Trans 45:972–5.
  • Agop M, Merches I. (2019). Operational procedures describing physical systesm. Boca Raton (FL): CRC press.
  • Agop M, Murgulet C. (2007). El Naschie’s epsilon((infinity)) space-time and scale relativity theory in the topological dimension D = 4. Chaos Solitons & Fractals 32:1231–40.
  • Agop M, Paun V, Harabagiu A. (2008). El Naschiès ((infinity)) theory and effects of nanoparticle clustering on the heat transport in nanofluids. Chaos Solitons & Fractals 37:1269–78.
  • Agop M, Paun VP. (2017). On the new perspectives of fractal theory. Fundaments and applications. Bucharest (Romania): Romanian Academy Publishing House.
  • Ailincai D, Dorobanțu AM, Dima B, et al. (2020). Poly(vinyl alcohol boric acid)-diclofenac sodium salt drug delivery systems: experimental and theoretical studies. J Immunol Res 2020:3124304.
  • Ailincai D, Marin L, Morariu S, et al. (2016). Dual crosslinked iminoboronate-chitosan hydrogels with strong antifungal activity against Candida planktonic yeasts and biofilms. Carbohydr Polym 152:306–16.
  • Ailincai D, Mititelu-Tartau L, Marin L. (2020). Citryl-imine-PEG-ylated chitosan hydrogels – promising materials for drug delivery applications. Int J Bio Macromol 162:1323–37.
  • Ailincai D, Tartau-Mititelu L, Marin L. (2018). Drug delivery systems based on biocompatible imino-chitosan hydrogels for local anticancer therapy. Drug Deliv 25:1080–90.
  • Angheluta T. (1957). Theory of functions with complex variations. Bucharest (Romania): Technical Publisher house.
  • Barbilian D. (1971). Elementary algebra in a didactic works of Dan Barbilian. Bucharest (Romania): Technical publishing house.
  • Barbilian D. (1974). Geometry and the theory of functions in the didactic works of Dan Barbilian. Bucharest (Romania): Technical publishing house.
  • Bhattarai N, Gunn J, Zhang M. (2010). Chitosan-based hydrogels for controlled, localized drug delivery. Adv Drug Deliv Rev 62:83–99.
  • Bonora GM, Drioli S. (2008). Recent advances on patents in poly(ethylene glycol)-based drug delivery. Recent Pat Drug Deliv Formul 2:189–95.
  • Bujoreanu C, Nedeff F, Benchea M, et al. (2017). Experimental and theoretical considerations on sound absorption performance of waste materials including the effect of backing plates. Appl Acoust 119:88–93.
  • Cartan E. (2001). Riemannian geometry in an orthogonal form. Singapore (Singapore): World Scientific Publishing.
  • Chari RVJ. (2008). Targeted cancer therapy: conferring specificity to cytotoxic drugs. Acc Chem Res 41:98–107.
  • Cobzeanu BM, Irimiciuc S, Vaideanu D, et al. (2017). Possible dynamics of polymer chains by means of a Ricatti’s procedure - an exploitation for drug release at large time intervals. MatPlast 54:531–4.
  • Colotin M, Pompilian GO, Nica P, et al. (2009). Fractal transport phenomena through the scale relativity model. Acta Phys Pol A 116:157–64.
  • Craciun AM, Mititelu Tartau L, Pinteala M, Marin L. (2019). Nitrosalicyl-imine-chitosan hydrogels based drug delivery systems for long term sustained release in local therapy. J Coll and Interf Sci 536:196–207.
  • Cristescu CP. (2008). Nonlinear dynamics and chaos. Theoretical fundaments and applications. Bucharest (Romania): Romanian Academy Publishing House.
  • D’souza A, Shegokar R. (2016). Polyethylene glycol (PEG): a versatile polymer for pharmaceutical applications. Expert Opin Drug Deliv 13:1257–75.
  • Fisher OZ, Khademhosseini A, Peppas NA. (2010). Drug delivery: nanoscale devices. In: Buschow KHJ, Chan RW, Veyssière P, eds. Encyclopedia of materials: science and technology. 2nd ed. Amsterdam (The Netherlands): Elsevier; 1–9 pp.
  • Iancu R, Irimiciuc SA, Agop M, et al. (2020). 5-fluorouracil release from chitosan-based matrix. Experimental and theoretical aspects. Mater Plast 57:180–9.
  • Iftime MM, Dobreci DL, Irimiciuc SA, et al. (2020). A theoretical mathematical model for assessing diclofenac release from chitosan-based formulations. Drug Deliv 27:1125–33.
  • Iftime MM, Mititelu Tartau L, Marin L. (2020). New formulations based on salicyl-imine-chitosan hydrogels for prolonged drug release. Int J Biol Macromol 160:398–408.
  • Iftime MM, Morariu S, Marin L. (2017). Salicyl-imine-chitosan hydrogels: supramolecular architecturing as a crosslinking method toward multifunctional hydrogels. Carbohydr Polym 165:39–50.
  • Irimiciuc S, Bulai G, Agop M, Gurlui S. (2018). Influence of laser-produced plasma parameters on the deposition process: in situ space- and time-resolved optical emission spectroscopy and fractal modeling approach. Appl Phys A 124:615.
  • Irimiciuc SA, Nica PE, Agop M, Focsa C. (2020). Target properties - plasma dynamics relationship in laser ablation of metals: common trends for fs, ps and ns irradiation regimes. Appl Surf Sci 506:144926.
  • Isanbor C, O’Hagan D. (2006). Fluorine in medicinal chemistry: a review of anti-cancer agents. J Fluorine Chem 127:303–19.
  • Jackson EA. (1993). Perspectives of nonlinear dynamics. Vol. 1. New York (NY): Cambridge University Press.
  • Jaynes ET. (1973). The well – posed problem. Found Phys 3:477–93.
  • Kosmidis K, Argyrakis P, Macheras P. (2003). Fractal kinetics in drug release from finite matrices. J Chem Phys 119:6373–7.
  • Kuen CY, Galen T, Fakurazi S, et al. (2020). Increased cytotoxic efficacy of protocatechuic acid in A549 human lung cancer delivered via hydrophobically modified-chitosan nanoparticles as an anticancer modality. Polymers 12:1951.
  • Mandelbrot BB. (1982). The fractal geometry of nature. San Fracisco (CA): W. H. Freeman and Co.
  • Marin L, Ailincai D, Morariu S, Tartau-Mititelu L. (2017). Development of biocompatible glycodynameric hydrogels joining two natural motifs by dynamic constitutional chemistry. Carbohydr Polym 170:60–71.
  • Marin L, Popescu MC, Zabulica A, et al. (2013). Chitosan as matrix for bio-polymer dispersed liquid crystal systems. Carbohydr Polym 95:16–24.
  • Mazilu N, Skyrmions AM. (2012). A great finishing touch to classical Newtonian philosophy. New York (NY): Nova Science.
  • Mazilu N, Agop M, Merches I. (2020). The mathematical principles of scale relativity physics. The concept of interpretation. Boca Raton (FL): CRC Press.
  • Merches I, Agop M. (2016). Differentiability and fractality in dynamics of physical systems. Hackensack (NJ): World Scientific.
  • Misner CW, Thorne KS, Wheeler JA. (2017). Gravitation. Princeton University Press, Princeton and Oxford.
  • Nottale L. (2011). Scale relativity and fractal space-time: a new approach to unifying relativity and quantum mechanics. London (UK): Imperial College Press.
  • Olaru AM, Marin L, Morariu S, et al. (2018). Biocompatible chitosan based hydrogels for potential application in local tumour therapy. Carbohydr Polym 179:59–70.
  • Pantziarka P, Sukhatme V, Bouche G, et al. (2016). Repurposing drugs in oncology (ReDO)-diclofenac as an anti-cancer agent. e-Cancer Med Sci 10:610.
  • Park K. (2014). The controlled drug delivery systems: past forward and future back. J Control Release 190:3–8.
  • Patra JK, Das G, Fraceto LF, et al. (2018). Nano based drug delivery systems: recent developments and future perspectives. J Nanobiotechnol 16:71.
  • Paun MA, Hanu RC, Nicanor C. (2010). Internal friction phenomena at polymeric and metallic shape memory materials. Experimental and theoretical results. Materiale Plastice 47:209–14.
  • Penrose R. (1960). A spinor approach to general relativity. Ann Phys 10:171–201.
  • Peppas NA, Brannon-Peppas L. (2010). Drug delivery biomaterials. In: Buschow KHJ, Chan RW, Veyssière P, eds. Encyclopedia of materials: science and technology 2nd ed. Amsterdam (The Netherlands): Elsevier; 196–207 pp.
  • Pertici V, Pin-Barre C, Rivera C, et al. (2019). Degradable and injectable hydrogel for drug delivery in soft tissues. Biomacromolecules 20:149–63.
  • Skyrme THR. (1994). Selected papers with commentary. In: Grown GE, ed. World scientific series in 20th century physics. Vol. 3. Singapore (Singapore): World Scientific Publishing.
  • Sultankulov B, Berillo D, Sultankulova K, et al. (2019). Progress in the development of chitosan-based biomaterials for tissue engineering and regenerative medicine. Biomolecules 9:470.
  • Tiwari G, Tiwari R, Sriwastawa B, et al. (2012). Drug delivery systems: an updated review. Int J Pharm Investig 2:2–11.
  • Vijayan A, Sabareeswaran A, Vinod Kumar GS. (2019). PEG grafted chitosan scaffold for dual growth factor delivery for enhanced wound healing. Sci Rep 9:19165.
  • Xi Y. (2018). Geometry of harmonics maps. New York (NY): Springer.
  • Ye J, Fu S, Zhou S, et al. (2020). Advances in hydrogels based on dynamic covalent bonding and prospects for its biomedical application. Eur Polym J 139:110024.