3,247
Views
17
CrossRef citations to date
0
Altmetric
RESEARCH ARTICLE

Development, optimization and characterization of nanoemulsion loaded with clove oil-naftifine antifungal for the management of tinea

ORCID Icon, , ORCID Icon &
Pages 343-356 | Received 14 Dec 2020, Accepted 18 Jan 2021, Published online: 01 Feb 2021

References

  • Abdelbary A, Salem HF, Khallaf RA, Ali AM. (2017). Mucoadhesive niosomal in situ gel for ocular tissue targeting: in vitro and in vivo evaluation of lomefloxacin hydrochloride. Pharm Dev Technol 22:409–17.
  • Abou-Taleb HA, Khallaf RA, Abdel-Aleem JA. (2018). Intranasal niosomes of nefopam with improved bioavailability: preparation, optimization, and in-vivo evaluation. Drug Des Devel Ther 12:3501–16.
  • Ahad A, Aqil M, Ali A. (2016). The application of anethole, menthone, and eugenol in transdermal penetration of valsartan: enhancement and mechanistic investigation. Pharm Biol 54:1042–51.
  • Alkhalidi HM, Naguib GH, Kurakula M, et al. (2018). In vitro and preclinical assessment of factorial design based nanoethosomal transdermal film formulation of mefenamic acid to overcome barriers to its use in relieving pain and inflammation. J Drug Deli Sci Technol 48:450–6.
  • Altmeyer P, Luther H, Klaschka F, et al. (1990). A double-blind clinical trial of fenticonazole cream versus naftifine cream applied once daily in patients with cutaneou s mycosis. Curr Therap Res 47:32–42.
  • Baldisserotto B, Parodi TV, Stevens ED. (2018). Lack of postexposure analgesic efficacy of low concentrations of eugenol in zebrafish. Vet Anaesth Analg 45:48–56.
  • Barboza JN, da Silva Maia Bezerra Filho C, Silva RO, et al. (2018). An overview on the anti-inflammatory potential and antioxidant profile of eugenol. Oxid Med Cell Longev 2018:3957262–9.
  • Barney R, Carroll J, Delaet D. (2006). Surfactant studies of quaternary ammonium compounds: critical surfactant concentration. J Surfact Deterg 9:137–40.
  • Bottone EJ. (2006). Dermatophytes, chromoblastomycosis and mycetoma. In: Bottone EJ, ed. An atlas of the clinical microbiology of the infectious diseases. Viral, fungal and parasitic agents. London, UK: Taylor and Francis, 41–50.
  • Branscomb R. (2005). The dermatophytoses, CE update. Lab Med 36:496–500.
  • Cevc G, Vierl U. (2010). Nanotechnology and the transdermal route: a state of the art review and critical appraisal. J Control Release 141:277–99.
  • Chaieb K, Hajlaoui H, Zmantar T, et al. (2007). The chemical composition and biological activity of clove essential oil, Eugenia caryophyllata (Syzigium aromaticum L. Myrtaceae): a short review. Phytother Res 21:501–6.
  • Chee HY, Lee MH. (2007). Antifungal activity of clove essential oil and its volatile vapour against dermatophytic fungi. Mycobiology 35:241–3.
  • Chen X, Ji ZL, Chen YZ. (2002). TTD: Therapeutic Target Database. Nucleic Acids Res 30:412–5.
  • Cuenca-Estrella M, Gomez-Lopez A, Mellado E, et al. (2006). Head-to-head comparison of the activities of currently available antifungal agents against 3,378 Spanish clinical isolates of yeasts and filamentous fungi. Antimicrob Agents Chemother 50:917–21.
  • Darvishi E, Omidi M, Bushehri AAS, et al. (2013). The antifungal eugenol perturbs dual aromatic and branched-chain amino acid permeases in the cytoplasmic membrane of yeast. PLoS One 8:e76028.
  • Dhawan S, Kapil R, Singh B. (2011). Formulation development and systematic optimization of solid lipid nanoparticles of quercetin for improved brain delivery. J Pharm Pharm 63:342–51.
  • Dillon SR, Sprecher C, Hammond A, et al. (2004). Interleukin 31, a cytokine produced by activated T cells, induces dermatitis in mice. Nat Immunol 5:752–60.
  • Esmaeili F, Rajabnejhad S, Partoazar AR, et al. (2016). Anti-inflammatory effects of eugenol nanoemulsion as a topical delivery system. Pharm Dev Technol 21:887–93.
  • Evandro W, et al. (2008). Determination of the maximum inhibitory dilution of cetylpyridinium chloride-based mouthwashes against staphylococcus aureus: an in vitro study. J Appl Oral Sci 16:275–9.
  • Garcia-godoy F. (2014). Comparative bioavailability and antimicrobial activity of cetylpyridinium chloride mouthrinses in vitro and in vivo. Am J Den 27:185–90.
  • Grimstad O, Sawanobori Y, Vestergaard C, et al. (2009). Anti-interleukin-31-antibodies ameliorate scratching behaviour in NC/Nga mice: a model of atopic dermatitis. Exp Dermatol 18:35–43.
  • Hamed SF, Sadek Z, Edris A. (2012). Antioxidant and antimicrobial activities of clove bud essential oil and eugenol nanoparticles in alcohol-free microemulsion. J Oleo Sci 61:641–8.
  • Hosny KM, Aldawsari HM, Bahmdan RH, et al. (2019). Preparation, optimization, and evaluation of hyaluronic acid-based hydrogel loaded with miconazole self-nanoemulsion for the treatment of oral thrush. AAPS PharmSciTech 20:297.
  • Hosny KM, Alhakamy NA, Sindi AM, Khallaf RA. (2020). Coconut oil nanoemulsion loaded with a statin hypolipidemic drug for management of burns: formulation and in vivo evaluation. Pharmaceutics 12:1061.
  • Huang J, Goolcharran C, Ghosh K. (2011). A quality by design approach to investigate tablet dissolution shift upon accelerated stability by multivariate methods. Eur J Pharm Biopharm 78:141–50.
  • Jaiswal M, Dudhe R, Sharma PK. (2015). Nanoemulsion: an advanced mode of drug delivery system. 3 Biotech 5:123–7.
  • Kim SS, Oh OJ, Min HY, et al. (2003). Eugenol suppresses cyclooxygenase-2 expression in lipopolysaccharide-stimulated mouse macrophage RAW264.7 cells. Life Sci 73:337–48.
  • Lee SJ, Han JI, Lee SHG, et al. (2007). Antifungal effect of eugenol and nerolidol against Microsporum gypseum in a Guinea Pig Model. Biol Pharm Bull 30:184–8.
  • Mahtab A, Anwar M, Mallick N, et al. (2016). Transungual delivery of ketoconazole nanoemulgel for the effective management of onychomycosis. AAPS PharmSciTech 17:1477–90.
  • Monk JP, Brogden RN. (1991). Naftifine. A review of its antimicrobial activity and therapeutic use in superficial dermatomycoses. Drugs 42:659–72.
  • Montenegro L, Parenti C, Turnaturi R, Pasquinucci L. (2017). Resveratrol-loaded lipid nanocarriers: correlation between in vitro occlusion factor and in vivo skin hydrating effect. Pharmaceutics 9:58.
  • Mukherjee PK, Leidich SD, Isham N, et al. (2003). Clinical Trychophyton rubrum strain exhibiting primary resistance to terbinafine. AAC 47:82–6.
  • Mutalik S, Udupa N. (2003). Effect of some penetration enhancers on the permeation of glibenclamide and glipizide through mouse skin. Pharmazie 58:891–4.
  • Okur Apaydin ÜN, Karabay Yavaşoǧlu NÜ, Yavaşoǧlu A, et al. (2011). Evaluation of skin permeation and anti-inflammatory and analgesic effects of new naproxen microemulsion formulations. Int J Pharm 416:136–44.
  • Okur ME, Ayla S, Yozgatlı V, et al. (2020). Evaluation of burn wound healing activity of novel fusidic acid loaded microemulsion based gel in male Wistar albino rats. S Pharm J 28:338–48.
  • Rawlison A, Pollingtons  , Walsh TF, Lamb DJ, et al. (2008). Efficacy of two alcohol-free 51. cetylpyridinium chloride mouthwashes-a randomized double-blind crossover study. J Clin Periodontol 35:230–5.
  • Rotta I, Sanchez A, Gonçalves PR, et al. (2012). Efficacy and safety of topical antifungals in the treatment of dermatomycosis: a systematic review. Br J Dermatol 166:927–33.
  • Sakeena MHF, Elrashid SM, Munavvar AS, Azmin MN. (2011). Effect of oil and drug concentrations on droplet size of palm oil esters nanoemulsions. J Oleo Sci 60:155–8.
  • Salem HF, El-Menshawe SF, Khallaf RA, Rabea YK. (2020). A novel transdermal nanoethosomal gel of lercanidipine HCl for treatment of hypertension: optimization using Box-Benkhen design, in vitro and in vivo characterization. Drug Deliv and Transl Res 10:227–40.
  • Shafiq-un-Nabi S, Shakeel F, Talegaonkar S, et al. (2007). Formulation development and optimization using nanoemulsion technique: a technical note. AAPS PharmSciTech 8:E12–28.
  • Sigward E, Mignet N, Rat P, et al. (2013). Formulation and cytotoxicity evaluation of new self-emulsifying multiple W/O/W nanoemulsions. Int J Nanomedicine 8:611–25.
  • Singh B, Ahuja N. (2004). Response surface optimization of drug delivery systems. In: Jain NK, ed. Progress in controlled and novel drug delivery systems. 1st ed. New Delhi, India: CBS Publishers, 470–509.
  • Singh B, Bhatowa R, Tripathi CB, Kapil R. (2011). Developing micro-/nanoparticulate drug delivery systems using “design of experiments”. Int J Pharm Investig 1:75–87.
  • Singh B, Mehta G, Kumar R, et al. (2005). Design, development and optimization of nimesulide-loaded liposomal systems for topical application. Curr Drug Deliv 2:143–53.
  • Sreenivasan PK, Haraszthy VI, Zambon JJ. (2013). Antimicrobial efficacy of 0·05% cetylpyridinium chloride mouthrinses. Lett Appl Microbiol 56:14–20.
  • Tsuchiya H. (2017). Anesthetic agents of plant origin: a review of phytochemicals with anesthetic activity. Molecules 22:1369.
  • Uerra F, Pasqualotto D, Rinaldo F, et al. (2019). Therapeutic efficacy of chlorhexidine-based mouthwashes and its adverse events: performance-related evaluation of mouthwashes added with Anti-Discoloration System and cetylpyridinium chloride. Int J Dent Hyg 17:229–36.
  • van Zuuren EJ, Fedorowicz Z, El-Gohary M. (2015). Evidence-based topical treatments for tinea cruris and tinea corporis: a summary of a Cochrane systematic review. Br J Dermatol 172:616–41.
  • Zhang H, Chen X, He JJ. (2009). Pharmacological action of clove oil and its application in oral care products. Oral Care Industry 19:23–4.
  • Zhang P, Zhang E, Xiao M, et al. (2013). Study of anti-inflammatory activities of α-d-glucosylated eugenol. Arch Pharm Res 36:109–15.