5,252
Views
38
CrossRef citations to date
0
Altmetric
Research Article

Enrofloxacin/florfenicol loaded cyclodextrin metal-organic-framework for drug delivery and controlled release

, , , , , , , & ORCID Icon show all
Pages 372-379 | Received 18 Dec 2020, Accepted 18 Jan 2021, Published online: 01 Feb 2021

References

  • Anand A, Das P, Nandi SK, Kundu B. (2020). Development of antibiotic loaded mesoporous bioactive glass and its drug release kinetics. Ceram Int 46:5477–83.
  • Andersson DI, Hughes D. (2011). Persistence of antibiotic resistance in bacterial populations. FEMS Microbiol Rev 35:901–11.
  • Atkinson I, Anghel EM, Predoana L, et al. (2016). Influence of ZnO addition on the structural, in vitro behavior and antimicrobial activity of sol-gel derived CaO-P2O5-SiO2 bioactive glasses. Ceram Int 42:3033–45.
  • Brooks BD, Davidoff SN, Grainger DW, Brook AE. (2013). Comparisons of release of several antibiotics from antimicrobial polymer-coated allograft bone void fillers. Int J Biomed Mater Res 1:21–5.
  • Crini G. (2014). Review: a history of cyclodextrins. Chem Rev 114:10940–75.
  • Doan HV, Hamzah HA, Prabhakaran PK, et al. (2019). Hierarchical metal-organic frameworks with macroporosity: synthesis, achievements, and challenges. Nano-Micro Lett 11:281–313.
  • Georgeta M, Despina V, Carpov A. (2001). Cyclodextrin polymers. Cyclodextrin Polym. J Bioactive Compat Polym 16:315–42.
  • Hesler M, Schwarz DH, Dähnhardt-Pfeiffer S, et al. (2020). Synthesis and in vitro evaluation of cyclodextrin hyaluronic acid conjugates as a new candidate for intestinal drug carrier for steroid hormones. Eur J Pharm Sci 143:105181.
  • Hilal D, Seda K. (2018). Computational screening of metal-organic frameworks for membrane-based CO2/N2/H2O separations: best materials for flue gas separation. J Phys Chem C, Nanomater Interf 122:17347–57.
  • Hou Y, Hu XJ, Tong HY, et al. (2020). Unraveling the relationship of the pore structures between the metal-organic frameworks and their derived carbon materials. Inorg Chem Commun 114:107825.
  • Jia JL, Liu Q, Yang TY, et al. (2017). Facile fabrication of varisized calcium carbonate microspheres as vaccine adjuvants. J Mater Chem B 5:1611–23.
  • Kaur H, Sundriyal S, Pachauri V, Ingebrandt  , et al. (2019). Luminescent metal-organic frameworks and their composites: potential future materials for organic light emitting displays. Coord Chem Rev 401:213077.
  • Kurek A, Grudniak AM, Kraczkiewicz-Dowjat A, Wolska KI. (2011). New antibacterial therapeutics and strategies. Pol J Microbiol 60:3–12.
  • Li HY, Lv N, Li X, et al. (2017). Composite CD-MOF nanocrystals-containing microspheres for sustained drug delivery. Nanoscale 9:7454–63.
  • Li WQ, Xu CF, Li SX, et al. (2019). Cyclodextrin based unimolecular micelles with targeting and biocleavable abilities as chemotherapeutic carrier to overcome drug resistance. Mater Sci Eng C Mater Biol Appl 105:110047.
  • Lin RB, Xiang SC, Zhou W, Chen BL. (2020). Microporous metal-organic framework materials for gas separation. Chem 6:337–63.
  • Liu J, Bao TY, Yang XY, et al. (2017). Controllable porosity conversion of metal-organic frameworks composed of natural ingredients for drug delivery. Chem Commun 53:7804–7.
  • Liu SQ, Fukushima K, Venkataraman S, et al. (2018). Supramolecular nanofibers self-assembled from cationic small molecules derived from repurposed poly(ethylene teraphthalate) for antibiotic delivery. Nanomed: Nanotechnol, Biol, Med 14:165–72.
  • Liu WC, Zhong YY, Wang XX, et al. (2020). A porous Cu(II)-based metal-organic framework carrier for pH-controlled anticancer drug delivery. Inorg Chem Commun 111:107675.
  • Mura S, Nicolas J, Couvreur P. (2013). Stimuli-responsive nanocarriers for drug delivery. Nat Mater 12:991–1003.
  • Musumeci T, Bonaccorso A, De Gaetano F, et al. (2020). A physico-chemical study on amphiphilic cyclodextrin/liposomes nanoassemblies with drug carrier potential. J Liposome Res 30:407–10.
  • Nathan W, Ockwig OD-F, Michael O, Yaghi OM. (2005). Reticular chemistry: occurrence and taxonomy of nets and grammar for the design of frameworks. Acc Chem Res 38:176–82.
  • Pires FQ, da Silva JKR, Sa-Barreto LL, et al. (2019). Lipid nanoparticles as carriers of cyclodextrin inclusion complexes: a promising approach for cutaneous delivery of a volatile essential oil. Coll Surf B Biointerf 182:110382.
  • Radovic-Moreno AF, Lu TK, Puscasu VA, et al. (2012). Surface charge-switching polymeric nanoparticles for bacterial cell wall-targeted delivery of antibiotics. ACS Nano 6:4279–87.
  • Smaldone RA, Forgan RS, Furukawa H, et al. (2010). Metal-organic frameworks from edible natural products. Angew Chem Int Ed Engl 49:8630–4.
  • Tian YF, Chen GH, Guo LH, et al. (2015). Methodology studies on detection of aminoglycoside residues. Food Anal Meth 8:1842–57.
  • Wu CT, Fan W, Chang J. (2013). Functional mesoporous bioactive glass nanospheres: synthesis, high loading efficiency, controllable delivery of doxorubicin and inhibitory effect on bone cancer cells. J Mater Chem B 1:2710–8.
  • Xiong MH, Bao Y, Yang XZ, et al. (2014). Delivery of antibiotics with polymeric particles. Adv Drug Deliv Rev 78:63–76.
  • Yang WH, Guo H, Yue LG, et al. (2020). Metal-organic frameworks derived MMoSx (M = Ni, Co and Ni/Co) composites as electrode materials for supercapacitor. J Alloys Compd 834:154118.
  • Zahraa H, Nathalie K, Lizette A, et al. (2019). Cyclodextrin-membrane interaction in drug delivery and membrane structure maintenance. Int J Pharm 564:59–76.
  • Zhang Y, Wang F, Ju EG, et al. (2016). Metal-organic-framework-based vaccine platforms for enhanced systemic immune and memory response. Adv Funct Mater 26:6454–61.