2,661
Views
21
CrossRef citations to date
0
Altmetric
Research Article

Combined delivery of salinomycin and docetaxel by dual-targeting gelatinase nanoparticles effectively inhibits cervical cancer cells and cancer stem cells

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, , ORCID Icon & ORCID Icon show all
Pages 510-519 | Received 18 Dec 2020, Accepted 02 Feb 2021, Published online: 04 Mar 2021

References

  • Almotiri A, Alzahrani HAA, Menendez-Gonzalez JB, et al. (2020). Zeb1 modulates hematopoietic stem cell fates required for suppressing acute myeloid leukemia. J Clin Invest 131(1):e129115.
  • Abubaker K, Latifi A, Luwor R, et al. (2013). Short-term single treatment of chemotherapy results in the enrichment of ovarian cancer stem cell-like cells leading to an increased tumor burden. Mol Cancer 12:24.
  • Arjomandnejad M, Muhammadnejad A, Haddadi M, et al. (2014). HeLa cell line xenograft tumor as a suitable cervical cancer model: growth kinetic characterization and immunohistochemistry array. Arch Iran Med 17:273–277.
  • Boehmerle W, Endres M. (2011). Salinomycin induces calpain and cytochrome c-mediated neuronal cell death. Cell Death Dis 2:e168.
  • Chandimali N, Koh H, Kim J, et al. (2020). BRM270 targets cancer stem cells and augments chemo-sensitivity in cancer. Oncol Lett 20:103.
  • Chen H, Zeng X, Tham HP, et al. (2019). NIR-light-activated combination therapy with a precise ratio of photosensitizer and prodrug using a host-guest strategy. Angew Chem Int Ed Engl 58:7641–7646.
  • Cheng L, Jiang D, Kamkaew A, et al. (2017). Renal-clearable PEGylated porphyrin nanoparticles for image-guided photodynamic cancer therapy. Adv Funct Mater 27:1702928.
  • Cui FB, Li RT, Liu Q, et al. (2014). Enhancement of radiotherapy efficacy by docetaxel-loaded gelatinase-stimuli PEG-Pep-PCL nanoparticles in gastric cancer. Cancer Lett 346:53–62.
  • Dong Y, Feng SS. (2004). Methoxy poly(ethylene glycol)-poly(lactide) (MPEG-PLA) nanoparticles for controlled delivery of anticancer drugs. Biomaterials 25:2843–2849.
  • Dorne JLCM, Fernández-Cruz ML, Bertelsen U, et al. (2013). Risk assessment of coccidostatics during feed cross-contamination: animal and human health aspects. Toxicol Appl Pharmacol 270:196–208.
  • Eswaran P, Kalyan S, Crystal J. (2018). Concurrent chemoradiation with nano- paclitaxel and carboplatin in locally advanced cervical cancer: A study at quaternary care medical center. Ann Oncol 29:ix81.
  • Gaponova AV, Rodin S, Mazina AA, Volchkov PV. (2020). Epithelial-mesenchymal transition: role in cancer progression and the perspectives of antitumor treatment. Acta Naturae 12:4–23.
  • Garcia-Mayea Y, Mir C, Carballo L, et al. (2020). TSPAN1: A novel protein involved in head and neck squamous cell carcinoma chemoresistance. Cancers 12:3269.
  • Glasgow MD, Chougule MB. (2015). Recent developments in active tumor targeted multifunctional nanoparticles for combination chemotherapy in cancer treatment and imaging. J Biomed Nanotechnol 11:1859–1898.
  • Gupta PB, Onder TT, Jiang G, et al. (2009). Identification of selective inhibitors of cancer stem cells by high-throughput screening. Cell 138:645–59.
  • Hu CM, Zhang L. (2012). Nanoparticle-based combination therapy toward overcoming drug resistance in cancer. Biochem Pharmacol 83:1104–1111.
  • Kim JH, Yoo HI, Kang HS, et al. (2012). Salinomycin sensitizes antimitotic drugs-treated cancer cells by increasing apoptosis via the prevention of G2 arrest. Biochem Biophys Res Commun 418:98–103.
  • Lee HG, Shin SJ, Chung HW, et al. (2017). Salinomycin reduces stemness and induces apoptosis on human ovarian cancer stem cell. J Gynecol Oncol 28:e14.
  • Li K, Zhan W, Jia M, et al. (2020). Dual loading of nanoparticles with doxorubicin and icotinib for the synergistic suppression of non-small cell lung cancer. Int J Med Sci 17:390–402.
  • Li L, Cui D, Ye L, et al. (2017). Codelivery of salinomycin and docetaxel using poly(D,L-lactic-co-glycolic acid)-poly(ethylene glycol) nanoparticles to target both gastric cancer cells and cancer stem cells. Anticancer Drugs 28:989–1001.
  • Li R, Wu W, Liu Q, et al. (2013). Intelligently targeted drug delivery and enhanced antitumor effect by gelatinase-responsive nanoparticles. PLoS One 8:e69643.
  • Lin YX, Wang Y, An HW, et al. (2019). Peptide-based autophagic gene and cisplatin co-delivery systems enable improved chemotherapy resistance. Nano Lett 19:2968–2978.
  • Liu Q, Li RT, Qian HQ, et al. (2012). Gelatinase-stimuli strategy enhances the tumor delivery and therapeutic efficacy of docetaxel-loaded poly(ethylene glycol)-poly(varepsilon-caprolactone) nanoparticles. Int J Nanomedicine 7:281–295.
  • Lu H, Samanta D, Xiang L, et al. (2015). Chemotherapy triggers HIF-1-dependent glutathione synthesis and copper chelation that induces the breast cancer stem cell phenotype. Proc Natl Acad Sci USA 112:E4600–4609.
  • Lv Y, Cang W, Li Q, et al. (2019). Erlotinib overcomes paclitaxel-resistant cancer stem cells by blocking the EGFR-CREB/GRβ-IL-6 axis in MUC1-positive cervical cancer. Oncogenesis 8:70.
  • Milanovic M, Fan DNY, Belenki D, et al. (2018). Senescence-associated reprogramming promotes cancer stemness. Nature 553:96–100.
  • Mohammad IS, Teng C, Chaurasiya B, et al. (2019). Drug-delivering-drug approach-based codelivery of paclitaxel and disulfiram for treating multidrug-resistant cancer. Int J Pharm 557:304–13.
  • Muntimadugu E, Kumar R, Saladi S, et al. (2016). CD44 targeted chemotherapy for co-eradication of breast cancer stem cells and cancer cells using polymeric nanoparticles of salinomycin and paclitaxel. Colloids Surf B Biointerfaces 143:532–46.
  • Organista-Nava J, Gómez-Gómez Y, Garibay-Cerdenares OL, et al. (2019). Cervical cancer stem cell-associated genes: Prognostic implications in cervical cancer. Oncol Lett 18:7–14.
  • Ortiz-Sánchez E, Santiago-López L, Cruz-Domínguez VB, et al. (2016). Characterization of cervical cancer stem cell-like cells: phenotyping, stemness, and human papilloma virus co-receptor expression. Oncotarget 7:31943–31954.
  • Ospina-Villa JD, Gómez-Hoyos C, Zuluaga-Gallego R, Triana-Chávez O. (2019). Encapsulation of proteins from Leishmania panamensis into PLGA particles by a single emulsion-solvent evaporation method. J Microbiol Methods 162:1–7.
  • Shahriari M, Taghdisi SM, Abnous K, et al. (2019). Synthesis of hyaluronic acid-based polymersomes for doxorubicin delivery to metastatic breast cancer. Int J Pharm 572:118835–118835.
  • Story P, Doube A. (2004). A case of human poisoning by salinomycin, an agricultural antibiotic. N Z Med J 117:U799.
  • Takaishi S, Okumura T, Tu S, et al. (2009). Identification of gastric cancer stem cells using the cell surface marker CD44. Stem Cells 27:1006–1020.
  • Venkatas J, Singh M. (2020). Cervical cancer: a meta-analysis, therapy and future of nanomedicine. Ecancer Med Sci 14:1111.
  • Wang G, Wang Z, Li C, et al. (2018). RGD peptide-modified, paclitaxel prodrug-based, dual-drugs loaded, and redox-sensitive lipid-polymer nanoparticles for the enhanced lung cancer therapy. Biomed Pharmacother 106:275–284.
  • Wang J. (2020). Combination treatment of cervical cancer using folate-decorated, ph-sensitive, carboplatin and paclitaxel co-loaded lipid-polymer hybrid nanoparticles. Drug Des Devel Ther 14:823–832.
  • Wang Q, Liu F, Wang L, et al. (2020). Enhanced and prolonged antitumor effect of salinomycin-loaded gelatinase-responsive nanoparticles via targeted drug delivery and inhibition of cervical cancer stem cells. Int J Nanomedicine 15:1283–1295.
  • Wang Q, Wu P, Ren W, et al. (2014). Comparative studies of salinomycin-loaded nanoparticles prepared by nanoprecipitation and single emulsion method. Nanoscale Res Lett 9:351.
  • Wang S, Meng X, Dong Y. (2017). Ursolic acid nanoparticles inhibit cervical cancer growth in vitro and in vivo via apoptosis induction. Int J Oncol 50:1330–1340.
  • Wang T, Narayanaswamy R, Ren H, Torchilin VP. (2016). Combination therapy targeting both cancer stem-like cells and bulk tumor cells for improved efficacy of breast cancer treatment. Cancer Biol Ther 17:698–707.
  • Wang X, Chang Y, Gao M, Zhang F. (2020). Wogonoside attenuates cutaneous squamous cell carcinoma by reducing epithelial-mesenchymal transition/invasion and cancer stem-like cell property. Onco Targets Ther 13:10097–10109.
  • Wang Z, Sun M, Li W, et al. (2020). A novel CD133- and EpCAM-targeted liposome with redox-responsive properties capable of synergistically eliminating liver cancer stem cells. Front Chem 8:649.
  • Wu P, Liu Q, Wang Q, et al. (2018). Novel silk fibroin nanoparticles incorporated silk fibroin hydrogel for inhibition of cancer stem cells and tumor growth. Int J Nanomedicine 13:5405–5418.
  • Zhang G-N, Liang Y, Zhou L-J, et al. (2011). Combination of salinomycin and gemcitabine eliminates pancreatic cancer cells. Cancer Lett 313:137–44.
  • Zhang H, Zhang Y, Chen C, et al. (2018). A double-negative feedback loop between DEAD-box protein DDX21 and Snail regulates epithelial-mesenchymal transition and metastasis in breast cancer. Cancer Lett 437:67–78.
  • Zhang S, Cheng J, Quan C, et al. (2020). circCELSR1 (hsa_circ_0063809) contributes to paclitaxel resistance of ovarian cancer cells by regulating FOXR2 expression via miR-1252. Mol Ther Nucleic Acids 19:718–30.
  • Zhang Y, Zhang H, Wang X, et al. (2012). The eradication of breast cancer and cancer stem cells using octreotide modified paclitaxel active targeting micelles and salinomycin passive targeting micelles. Biomaterials 33:679–91.
  • Zhang Z, Xu J, Liu B, et al. (2019). Ponicidin inhibits pro-inflammatory cytokine TNF-α-induced epithelial-mesenchymal transition and metastasis of colorectal cancer cells via suppressing the AKT/GSK-3β/Snail pathway. Inflammopharmacology 27:627–638.
  • Zheng M, Jiang Y-p, Chen W, et al. (2015). Snail and Slug collaborate on EMT and tumor metastasis through miR-101-mediated EZH2 axis in oral tongue squamous cell carcinoma. Oncotarget 6:6797–6810.
  • Zhi QM, Chen XH, Ji J, et al. (2011). Salinomycin can effectively kill ALDH(high) stem-like cells on gastric cancer. Biomed Pharmacother 65:509–15.
  • Zhou J, Li P, Xue X, et al. (2013). Salinomycin induces apoptosis in cisplatin-resistant colorectal cancer cells by accumulation of reactive oxygen species. Toxicol Lett 222:139–45.
  • Zhou J, Sun M, Jin S, et al. (2019). Combined using of paclitaxel and salinomycin active targeting nanostructured lipid carriers against non-small cell lung cancer and cancer stem cells. Drug Deliv 26:281–9.
  • Zhou S, Wang F, Wong ET, et al. (2013). Salinomycin: a novel anti-cancer agent with known anti-coccidial activities. Curr Med Chem 20:4095–101.