3,874
Views
17
CrossRef citations to date
0
Altmetric
Review Article

Nanotechnological approach to delivering nutraceuticals as promising drug candidates for the treatment of atherosclerosis

, , &
Pages 550-568 | Received 21 Dec 2020, Accepted 15 Feb 2021, Published online: 11 Mar 2021

References

  • Abe Y, Hashimoto S, Horie T. (1999). Curcumin inhibition of inflammatory cytokine production by human peripheral blood monocytes and alveolar macrophages. Pharmacol Res 39:41–7.
  • Ackermann RT, Mulrow CD, Ramirez G, et al. (2001). Garlic shows promise for improving some cardiovascular risk factors. Arch Intern Med 161:813.
  • Adamo RF, Fishbein I, Zhang K, et al. (2016). Magnetically enhanced cell delivery for accelerating recovery of the endothelium in injured arteries. J Control Release 222:169–75.
  • Aguilar EC, Leonel AJ, Teixeira LG, et al. (2014). Butyrate impairs atherogenesis by reducing plaque inflammation and vulnerability and decreasing NFκB activation. Nutr Metab Cardiovasc Dis 24:606–13.
  • Akazawa N, Choi Y, Miyaki A, et al. (2012). Curcumin ingestion and exercise training improve vascular endothelial function in postmenopausal women. Nutr Res 32:795–9.
  • Allijn IE, Czarny BMS, Wang X, et al. (2017). Liposome encapsulated berberine treatment attenuates cardiac dysfunction after myocardial infarction. J Control Release 247:127–33.
  • Ambrosioni E, Bacchelli S, Degli Esposti D, Borghi C. (1992). ACE-inhibitors and atherosclerosis. Eur J Epidemiol 8:129–33.
  • Anselmo AC, Modery-Pawlowski CL, Menegatti S, et al. (2014). Platelet-like nanoparticles: mimicking shape, flexibility, and surface biology of platelets to target vascular injuries. ACS Nano 8:11243–53.
  • Arab L, Steck S. (2000). Lycopene and cardiovascular disease. Am J Clin Nutr 71:1691S–5S.
  • Ashor AW, Lara J, Mathers JC, Siervo M. (2014). Effect of vitamin C on endothelial function in health and disease: a systematic review and meta-analysis of randomised controlled trials. Atherosclerosis 235:9–20.
  • Bartneck M, Peters FM, Warzecha KT, et al. (2014). Liposomal encapsulation of dexamethasone modulates cytotoxicity, inflammatory cytokine response, and migratory properties of primary human macrophages. Nanomed Nanotechnol Biol Med 10:1209–20.
  • Bejarano J, Navarro-Marquez M, Morales-Zavala F, et al. (2018). Nanoparticles for diagnosis and therapy of atherosclerosis and myocardial infarction: evolution toward prospective theranostic approaches. Theranostics 8:4710–32.
  • Beldman TJ, Malinova TS, Desclos E, et al. (2019). Nanoparticle-aided characterization of arterial endothelial architecture during atherosclerosis progression and metabolic therapy. ACS Nano 13:13759–74.
  • Berbée JFP, Wong MC, Wang Y, et al. (2013). Resveratrol protects against atherosclerosis, but does not add to the antiatherogenic effect of atorvastatin, in APOE * 3-Leiden.CETP mice. J. Nutr. Biochem 24:1423–30.
  • Bertrand N, Wu J, Xu X, et al. (2014). Cancer nanotechnology: the impact of passive and active targeting in the era of modern cancer biology. Adv Drug Deliv Rev 66:2–25.
  • Biesalski HK. (2002). Nutraceuticals: the link between nutrition and medicine. J Toxicol - Cutan Ocul Toxicol 21:9–30.
  • Bitzur R, Cohen H, Kamari Y, Harats D. (2013). Intolerance to statins: mechanisms and management. Diabetes Care 36:S325–S30.
  • Borriello A, Cucciolla V, Della Ragione F, Galletti P. (2010). Dietary polyphenols: focus on resveratrol, a promising agent in the prevention of cardiovascular diseases and control of glucose homeostasis. Nutr Metab Cardiovasc Dis 20:618–25.
  • Bronte-Stewart B, Heptinstall RH. (1954). The relationship between experimental hypertension and cholesterol-induced atheroma in rabbits. J Pathol Bacteriol 68:407–17.
  • Brown BE, Kim CHJ, Torpy FR, et al. (2014). Supplementation with carnosine decreases plasma triglycerides and modulates atherosclerotic plaque composition in diabetic apo E(-/-) mice. Atherosclerosis 232:403–9.
  • Budoff MJ, Takasu J, Flores FR, et al. (2004). Inhibiting progression of coronary calcification using Aged Garlic Extract in patients receiving statin therapy: a preliminary study. Prev Med 39:985–91.
  • Bühler FR, Laragh JH, Baer L, et al. (1972). Propranolol inhibition of renin secretion: a specific approach to diagnosis and treatment of renin-dependent hypertensive diseases. N Engl J Med 287:1209–14.
  • Bulgarelli A, Leite ACA, Dias AAM, Maranhão RC. (2013). Anti-atherogenic effects of methotrexate carried by a lipid nanoemulsion that binds to ldl receptors in cholesterol-fed rabbits. Cardiovasc Drugs Ther 27:531–9.
  • Burnouf T, Goubran HA, Chen TM, et al. (2013). Blood-derived biomaterials and platelet growth factors in regenerative medicine. Blood Rev 27:77–89.
  • Carluccio MA, Sicullela L, Ancora MA, et al. (2003). Olive oil and red wine antioxidant polyphenols inhibit endothelial activation: antiatherogenic properties of Mediterranean diet phytochemicals. Arterioscler Thromb Vasc Biol 23:622–9.
  • Cavalcanti Neto MP, Aquino JdS, Romão da Silva LdF, et al. (2018). Gut microbiota and probiotics intervention: a potential therapeutic target for management of cardiometabolic disorders and chronic kidney disease?. Pharmacol Res 130:152–63.
  • Cheng WE, Chang MY, Wei JY, et al. (2015). Berberine reduces Toll-like receptor-mediated macrophage migration by suppression of Src enhancement. Eur J Pharmacol 757:1–10.
  • Chmielowski RA, Abdelhamid DS, Faig JF, et al. (2017). Athero-inflammatory nanotherapeutics: ferulic acid-based poly(anhydride-ester) nanoparticles attenuate foam cell formation by regulating macrophage lipogenesis and reactive oxygen species generation. Acta Biomater 57:85–94.
  • Chuengsamarn S, Rattanamongkolgul S, Phonrat B, et al. (2014). Reduction of atherogenic risk in patients with type 2 diabetes by curcuminoid extract: a randomized controlled trial. J Nutr Biochem 25:144–150.
  • Cicero AFG, Colletti A, Bajraktari G, et al. (2017). Lipid-lowering nutraceuticals in clinical practice: position paper from an International Lipid Expert Panel. Nutr Rev 75:731–67.
  • Cormode DP, Roessl E, Thran A, et al. (2010). Atherosclerotic plaque composition: analysis with multicolor CT and targeted gold nanoparticles. Radiology 256:774–82.
  • Damiano MG, Mutharasan RK, Tripathy S, et al. (2013). Templated high density lipoprotein nanoparticles as potential therapies and for molecular delivery. Adv Drug Deliv Rev 65:649–62.
  • de Courten B, Jakubova M, de Courten MP, et al. (2016). Effects of carnosine supplementation on glucose metabolism: pilot clinical trial. Obesity 24:1027–34.
  • Dell’Agli M, Fagnani R, Mitro N, et al. (2006). Minor components of olive oil modulate proatherogenic adhesion molecules involved in endothelial activation. J Agric Food Chem 54:3259–64.
  • Deshun L, Kassab GS. (2011). Role of shear stress and stretch in vascular mechanobiology. J R Soc Interfaceface 8:137.
  • Dong H, Zhao Y, Zhao L, Lu F. (2013). The effects of berberine on blood lipids: a systemic review and meta-analysis of randomized controlled trials. Planta Med 79:437–46.
  • Duivenvoorden R, Tang J, Cormode DP, et al. (2014). A statin-loaded reconstituted high-density lipoprotein nanoparticle inhibits atherosclerotic plaque inflammation. Nat Commun 5:3065.
  • Egawa G, Nakamizo S, Natsuaki Y, et al. (2013). Intravital analysis of vascular permeability in mice using two-photon microscopy. Sci Rep 3:1932.
  • Ehrenstein MR, Jury EC, Mauri C. (2005). Statins for atherosclerosis-as good as it gets?. N Engl J Med 352:73–5.
  • Estruch R, Ros E, Salas-Salvadó J, et al. (2013). Primary prevention of cardiovascular disease with a Mediterranean diet. N Engl J Med 378:e34.
  • Evans RJ, Lavin B, Phinikaridou A, et al. (2020). Targeted molecular iron oxide contrast agents for imaging atherosclerotic plaque. Nanotheranostics 4:184–94.
  • Falk E. (2006). Pathogenesis of atherosclerosis. J Am Coll Cardiol 47:C7–12.
  • Fang RH, Hu C-MJ, Luk BT, et al. (2014). Cancer cell membrane-coated nanoparticles for anticancer vaccination and drug delivery. Nano Lett 14:2181–8.
  • Ferrières J. (2004). The French paradox: lessons for other countries. Heart 90:107–11.
  • Fitó M, Cladellas M, de la Torre R, et al. (2008). Anti-inflammatory effect of virgin olive oil in stable coronary disease patients: a randomized, crossover, controlled trial. Eur J Clin Nutr 62:570–4.
  • Flores AM, Hosseini-Nassab N, Jarr K-U, et al. (2020). Pro-efferocytic nanoparticles are specifically taken up by lesional macrophages and prevent atherosclerosis. Nat Nanotechnol 15:154–61.
  • Flores AM, Ye J, Jarr KU, et al. (2019). Nanoparticle therapy for vascular diseases. ATVB 39:635–46.
  • Fogacci F, Banach M, Mikhailidis DP, et al. (2019). Safety of red yeast rice supplementation: a systematic review and meta-analysis of randomized controlled trials. Pharmacol Res 143:1–16.
  • Frank-Kamenetsky M, Grefhorst A, Anderson AA, et al. (2008). Therapeutic RNAi targeting PCSK9 acutely lowers plasma cholesterol in rodents and LDL cholesterol in nonhuman primates. Proc Natl Acad Sci USA 105:11915–20.
  • Franzese CJ, Bliden KP, Gesheff MG, et al. (2015). Relation of fish oil supplementation to markers of atherothrombotic risk in patients with cardiovascular disease not receiving lipid-lowering therapy. Am J Cardiol 115:1204–11.
  • Gao C, Huang Q, Liu C, et al. (2020). Treatment of atherosclerosis by macrophage-biomimetic nanoparticles via targeted pharmacotherapy and sequestration of proinflammatory cytokines. Nat Commun 11:2622.
  • Gao L, Mao Q, Cao J, et al. (2012). Effects of coenzyme Q10 on vascular endothelial function in humans: a meta-analysis of randomized controlled trials. Atherosclerosis 221:311–16.
  • Gao S, Zhou J, Liu N, et al. (2015). Curcumin induces M2 macrophage polarization by secretion IL-4 and/or IL-13. J Mol Cell Cardiol 85:131–9.
  • García-Villalba R, Carrasco-Pancorbo A, Nevedomskaya E, et al. (2010). Exploratory analysis of human urine by LC-ESI-TOF MS after high intake of olive oil: understanding the metabolism of polyphenols. Anal Bioanal Chem 398:463–75.
  • Gavrila D, Li WG, McCormick ML, et al. (2005). Vitamin E inhibits abdominal aortic aneurysm formation in angiotensin II-infused apolipoprotein E-deficient mice. Arterioscler Thromb Vasc Biol 25:1671–7.
  • Getts DR, Terry RL, Getts MT, et al. (2014). Therapeutic inflammatory monocyte modulation using immune-modifying microparticles. Sci Transl Med 6:219ra7.
  • Giannini F, Candilio L, Mitomo S, et al. (2018). A practical approach to the management of complications during percutaneous coronary intervention. JACC: Cardiovasc Interven 11:1797–810.
  • Glass CK, Witztum JL. (2001). Atherosclerosis. the road ahead. Cell 104:503–16.
  • González-Santiago M, Martín-Bautista E, Carrero JJ, et al. (2006). One-month administration of hydroxytyrosol, a phenolic antioxidant present in olive oil, to hyperlipemic rabbits improves blood lipid profile, antioxidant status and reduces atherosclerosis development. Atherosclerosis 188:35–42.
  • Gorinstein S, Leontowicz H, Lojek A, et al. (2002). Olive oils improve lipid metabolism and increase antioxidant potential in rats fed diets containing cholesterol. J Agric Food Chem 50:6102–8.
  • Granados-Principal S, Quiles JL, Ramirez-Tortosa CL, et al. (2010). Hydroxytyrosol: from laboratory investigations to future clinical trials. Nutr Rev 68:191–206.
  • Guivernau M, Meza N, Barja P, Roman O. (1994). Clinical and experimental study on the long-term effect of dietary gamma-linolenic acid on plasma lipids, platelet aggregation, thromboxane formation, and prostacyclin production. Prostaglandins, Leukot Essent Fat Acids 51:311–6.
  • Guo X, Li Z, Vittinghoff E, et al. (2018). Trends in rate of acute myocardial infarction among patients aged <30 years. Nat Rev Cardiol 15:119.
  • Han Y, Zhao R, Xu F. (2018). Neutrophil-based delivery systems for nanotherapeutics. Small 14:1801674.
  • Hansson GK. (2005). Inflammation, atherosclerosis, and coronary artery disease. N Engl J Med 352:1685–95.
  • Harel-Adar T, Ben Mordechai T, Amsalem Y, et al. (2011). Modulation of cardiac macrophages by phosphatidylserine-presenting liposomes improves infarct repair. Proc Natl Acad Sci USA 108:1827–32.
  • Heiss C, Sansone R, Karimi H, et al. (2015). Impact of cocoa flavanol intake on age-dependent vascular stiffness in healthy men: a randomized, controlled, double-masked trial. Age 37:9794.
  • Herman LL, Padala PA, Bashir K. (2019). Angiotensin converting enzyme inhibitors (ACEI). Treasure Island (FL): StatPearls Publishing.
  • Higgins JP. (2003). Can angiotensin-converting enzyme inhibitors reverse atherosclerosis? South Med J 96:569–79.
  • Hsu SP, Wu M-S, Yang C-C, et al. (2007). Chronic green tea extract supplementation reduces hemodialysisenhanced production of hydrogen peroxide and hypochlorous acid, atherosclerotic factors, and proinflammatory cytokines. Am J Clin Nutr 86:1539–47.
  • Hu CMJ, Zhang L, Aryal S, et al. (2011). Erythrocyte membrane-camouflaged polymeric nanoparticles as a biomimetic delivery platform. Proc Natl Acad Sci USA 108:10980–5.
  • Hughes DA, Southon S, Pinder AC. (1996). (n-3) Polyunsaturated fatty acids modulate the expression of functionally associated molecules on human monocytes in vitro. J Nutr 126:603–10.
  • Hyafil F, Cornily J-C, Feig JE, et al. (2007). Noninvasive detection of macrophages using a nanoparticulate contrast agent for computed tomography. Nat Med 13:636–41.
  • Insull W. (2006). Clinical utility of bile acid sequestrants in the treatment of dyslipidemia: a scientific review. South Med J 99:257–73.
  • Ito MK. (2015). Long-chain omega-3 fatty acids, fibrates and niacin as therapeutic options in the treatment of hypertriglyceridemia: a review of the literature. Atherosclerosis 242:647–656.
  • Iverson NM, Plourde NM, Sparks SM, et al. (2011). Dual use of amphiphilic macromolecules as cholesterol efflux triggers and inhibitors of macrophage athero-inflammation. Biomaterials 32:8319–27.
  • Jayagopal A, Linton MF, Fazio S, Haselton FR. (2010). Insights into atherosclerosis using nanotechnology. Curr Atheroscler Rep 12:209–15.
  • Jeong HW, Hsu KC, Lee J-W, et al. (2009). Berberine suppresses proinflammatory responses through AMPK activation in macrophages. Am J Physiol - Endocrinol Metab 296:E955–64.
  • Jin K, Luo Z, Zhang B, Pang Z. (2018). Biomimetic nanoparticles for inflammation targeting. Acta Pharm Sin B 8:23–33.
  • Johnston TP, Korolenko TA, Pirro M, Sahebkar A. (2017). Preventing cardiovascular heart disease: promising nutraceutical and non-nutraceutical treatments for cholesterol management. Pharmacol Res 120:219–25.
  • Kamaly N, Fredman G, Subramanian M, et al. (2013). Development and in vivo efficacy of targeted polymeric inflammation- resolving nanoparticles. Proc Natl Acad Sci USA 110:6506–11.
  • Kamaly N, Fredman G, Fojas JJR, et al. (2016). Targeted interleukin-10 nanotherapeutics developed with a microfluidic chip enhance resolution of inflammation in advanced atherosclerosis. ACS Nano 10:5280–92.
  • Kamaly N, Yameen B, Wu J, Farokhzad OC. (2016). Degradable controlled-release polymers and polymeric nanoparticles: mechanisms of controlling drug release. Chem Rev 116:2602–63.
  • Katan MB, Grundy SM, Jones P, et al. (2003). Efficacy and safety of plant stanols and sterols in the management of blood cholesterol levels. Mayo Clin Proc 78:965–78.
  • Katsuki S, Matoba T, Nakashiro S, et al. (2014). Nanoparticle-mediated delivery of pitavastatin inhibits atherosclerotic plaque destabilization/rupture in mice by regulating the recruitment of inflammatory monocytes. Circulation 129:896–906.
  • Keys A. (1997). Coronary heart disease in seven countries. 1970. Nutrition 13:250–2.
  • Khaw KT, Bingham S, Welch A, et al. (2001). Relation between plasma ascorbic acid and mortality in men and women in EPIC-Norfolk prospective study: a prospective population study. Lancet 357:657–63.
  • Kheirolomoom A, Kim CW, Seo JW, et al. (2015). Multifunctional nanoparticles facilitate molecular targeting and miRNA delivery to inhibit atherosclerosis in ApoE(-/-) mice. ACS Nano 9:8885–97.
  • Khemani M, Sharon M, Sharon M. (2012). Encapsulation of berberine in nano-sized PLGA synthesized by emulsification method. ISRN Nanotechnol 2012:1–9.
  • Kim D, Park S, Jae HL, et al. (2007). Antibiofouling polymer-coated gold nanoparticles as a contrast agent for in vivo X-ray computed tomography imaging. J Am Chem Soc 129:7661–5.
  • Kim K, Huang S-W, Ashkenazi S, et al. (2007). Photoacoustic imaging of early inflammatory response using gold nanorods. Appl Phys Lett 90:223901.
  • Kishimoto Y, Yoshida H, Kondo K. (2016). Potential anti-atherosclerotic properties of astaxanthin. Mar Drugs 14:35.
  • Kong W, Wei J, Abidi P, et al. (2004). Berberine is a novel cholesterol-lowering drug working through a unique mechanism distinct from statins. Nat Med 10:1344–51.
  • Kooi ME, Cappendijk VC, Cleutjens KBJM, et al. (2003). Accumulation of ultrasmall superparamagnetic particles of iron oxide in human atherosclerotic plaques can be detected by in vivo magnetic resonance imaging. Circulation 107:2453–8.
  • Korzeniowska K, Cieślewicz A, Pawlaczyk M, et al. (2017). Angioedema after angiotensin-converting enzyme inhibitors. Acta Pol Pharm – Drug Res 74:983–6.
  • Koscielny J. (1999). The antiatherosclerotic effect of Allium sativum. Atherosclerosis 144:237–49.
  • Kostyuk VA, Potapovich AI, Suhan TO, et al. (2011). Antioxidant and signal modulation properties of plant polyphenols in controlling vascular inflammation. Eur J Pharmacol 658:248–56.
  • Kosuge H, Sherlock SP, Kitagawa T, et al. (2012). Near infrared imaging and photothermal ablation of vascular inflammation using single-walled carbon nanotubes. J Am Heart Assoc 1:e002568.
  • Kromhout D, Keys A, Aravanis C, et al. (1989). Food consumption patterns in the 1960s in seven countries. Am J Clin Nutr 49:889–94.
  • Lee DY, Li H, Lim HJ, et al. (2012). Anti-inflammatory activity of sulfur-containing compounds from garlic. J Med Food 15:992–9.
  • Lee S. (2014). Monocytes: a novel drug delivery system targeting atherosclerosis. J Drug Target 22:138–45.
  • Lee T-S, Pan C-C, Peng C-C, et al. (2010). Anti-atherogenic effect of berberine on LXRα-ABCA1-dependent cholesterol efflux in macrophages. J Cell Biochem 111:104–10.
  • Leslie MA, Cohen DJA, Liddle DM, et al. (2015). A review of the effect of omega-3 polyunsaturated fatty acids on blood triacylglycerol levels in normolipidemic and borderline hyperlipidemic individuals. Lipids Health Dis 14:53.
  • Leuschner F, Dutta P, Gorbatov R, et al. (2011). Therapeutic siRNA silencing in inflammatory monocytes in mice. Nat Biotechnol 29:1005–10.
  • Levantesi G, Marfisi RM, Mozaffarian D, et al. (2013). Wine consumption and risk of cardiovascular events after myocardial infarction: results from the GISSI-Prevenzione trial. Int J Cardiol 163:282–7.
  • Li W, Chen X. (2015). Gold nanoparticles for photoacoustic imaging. Nanomedicine 10:299–320.
  • Li Y, Jiang L, Jia Z, et al. (2014). A meta-analysis of red yeast rice: an effective and relatively safe alternative approach for dyslipidemia. PLoS One 9:e98611.
  • Li YH, Yang P, Kong W-J, et al. (2009). Berberine analogues as a novel class of the low-density-lipoprotein receptor up-regulators: synthesis, structure-activity relationships, and cholesterol-lowering efficacy. J Med Chem 52:492–501.
  • Libby P. (2002). Inflammation in atherosclerosis. Nature 420:868–74.
  • Liu T, Li J, Liu Y, et al. (2012). Short-Chain fatty acids suppress lipopolysaccharide-Induced production of nitric oxide and proinflammatory cytokines through inhibition of NF-κB Pathway in RAW264.7 cells. Inflammation 35:1676–84.
  • Lobatto ME, Fayad ZA, Silvera S, et al. (2010). Multimodal clinical imaging to longitudinally assess a nanomedical anti-inflammatory treatment in experimental atherosclerosis. Mol Pharm 7:2020–9.
  • Lobatto ME, Fuster V, Fayad ZA, Mulder WJM. (2011). Perspectives and opportunities for nanomedicine in the management of atherosclerosis. Nat Rev Drug Discov 10:963.
  • Ma S, Tain XY, Zhang Y, et al. (2016). E-selectin-targeting delivery of microRNAs by microparticles ameliorates endothelial inflammation and atherosclerosis. Sci Rep 6:22910.
  • Majmudar MD, Yoo J, Keliher EJ, et al. (2013). Polymeric nanoparticle PET/MR imaging allows macrophage detection in atherosclerotic plaques. Circ Res 112:755–61.
  • Mangas-Cruz MA, Fernández-Moyano A, Albi T, et al. (2001). Effects of minor constituents (non-glyceride compounds) of virgin olive oil on plasma lipid concentrations in male Wistar rats. Clin Nutr 20:211–5.
  • Marrache S, Dhar S. (2013). Biodegradable synthetic high-density lipoprotein nanoparticles for atherosclerosis. Proc Natl Acad Sci USA 110:9445–50.
  • Marzocchella L, Fantini M, Benvenuto M, et al. (2011). Dietary flavonoids: molecular mechanisms of action as anti-inflammatory agents. Recent Pat Inflamm Allergy Drug Discov 5:200–20.
  • Masoudi Asil S, Ahlawat J, Guillama Barroso G, Narayan M. (2020). Nanomaterial based drug delivery systems for the treatment of neurodegenerative diseases. Biomater Sci 8:4109–28.
  • Matsumoto T, D’Uscio LV, Eguchi D, et al. (2003). Protective effect of chronic vitamin C treatment on endothelial function of apolipoprotein E-deficient mouse carotid artery. J Pharmacol Exp Ther 306:103–8.
  • Matuszak J, Lutz B, Sekita A, et al. (2018). Drug delivery to atherosclerotic plaques using superparamagnetic iron oxide nanoparticles. Int J Nanomedicine 13:8443–60.
  • Meng N, Gong Y, Zhang J, et al. (2019). A novel curcumin-loaded nanoparticle restricts atherosclerosis development and promotes plaques stability in apolipoprotein E deficient mice. J Biomater Appl 33:946–54.
  • Menzel T, Lührs H, Zirlik S, et al. (2004). Butyrate inhibits leukocyte adhesion to endothelial cells via modulation of VCAM-1. Inflamm Bowel Dis 10:122–8.
  • Miles EA, Wallace FA, Calder PC. (2000). Dietary fish oil reduces intercellular adhesion molecule 1 and scavenger receptor expression on murine macrophages. Atherosclerosis 152:43–50.
  • Mo H, Fu C, Wu Z, et al. (2020). IL-6-targeted ultrasmall superparamagnetic iron oxide nanoparticles for optimized MRI detection of atherosclerotic vulnerable plaques in rabbits. RSC Adv 10:15346–53.
  • Moreno PR. (2001). Pathophysiology of plaque disruption and thrombosis in acute ischemic syndromes. J Stroke Cerebrovasc Dis 10:2–9.
  • Morrison M, van der Heijden R, Heeringa P, et al. (2014). Epicatechin attenuates atherosclerosis and exerts anti-inflammatory effects on diet-induced human-CRP and NFκB in vivo. Atherosclerosis 233:149–56.
  • Moss JWE, Ramji DP. (2016). Nutraceutical therapies for atherosclerosis. Nat Rev Cardiol 13:513–32.
  • Musunuru K, Kathiresan S. (2016). Surprises from genetic analyses of lipid risk factors for atherosclerosis. Circ Res 118:579–85.
  • Nair HB, Sung B, Yadav VR, et al. (2010). Delivery of antiinflammatory nutraceuticals by nanoparticles for the prevention and treatment of cancer. Biochem Pharmacol 80:1833–43.
  • Nakano K, Egashira K, Masuda S, et al. (2009). Formulation of nanoparticle-eluting stents by a cationic electrodeposition coating technology. efficient nano-drug delivery via bioabsorbable polymeric nanoparticle-eluting stents in porcine coronary arteries. JACC Cardiovasc Interv 2:277–83.
  • Nakashiro S, Matoba T, Umezu R, et al. (2016). Pioglitazone-incorporated nanoparticles prevent plaque destabilization and rupture by regulating monocyte/macrophage differentiation in ApoE -/-Mice. Arterioscler Thromb Vasc Biol 36:491–500.
  • Narain A, Asawa S, Chhabria V, Patil-Sen Y. (2017). Cell membrane coated nanoparticles: next-generation therapeutics. Nanomedicine 12:2677–92.
  • Nashed B, Yeganeh B, HayGlass KT, Moghadasian MH. (2005). Antiatherogenic effects of dietary plant sterols are associated with inhibition of proinflammatory cytokine production in Apo E-KO mice. J Nutr 135:2438–44.
  • Newby AC. (2007). Metalloproteinases and vulnerable atherosclerotic plaques. Trends Cardiovasc Med 17:253–8.
  • Niki T, Wakatsuki T, Yamaguchi K, et al. (2016). Effects of the addition of eicosapentaenoic acid to strong statin therapy on inflammatory cytokines and coronary plaque components assessed by integrated backscatter intravascular ultrasound. Circ J 80:450–60.
  • Olszanecki R, Jawien J, Gajda M, et al. (2005). Effect of curcumin on atherosclerosis in apoE/LDLR-double knockout mice. J Physiol Pharmacol 56:627–35.
  • Osganian SK, Stampfer MJ, Rimm E, et al. (2003). Vitamin C and risk of coronary heart disease in women. J Am Coll Cardiol 42:246–52.
  • Pereira MA, O’Reilly E, Augustsson K, et al. (2004). Dietary fiber and risk of coronary heart disease: a pooled analysis of cohort studies. Arch Intern Med 164:370–6.
  • Peter L. (1995). Molecular bases of the acute coronary syndromes. Circulation 91:2844–2850.
  • Petersen LK, York AW, Lewis DR, et al. (2014). Amphiphilic nanoparticles repress macrophage atherogenesis: novel core/shell designs for scavenger receptor targeting and down-regulation. Mol Pharm 11:2815–24.
  • Peterson JJ, Dwyer JT, Jacques PF, Mccullough ML. (2012). Associations between flavonoids and cardiovascular disease incidence or mortality in European and US populations. Nutr Rev 70:491–508.
  • Pham LM, Kim E-C, Ou W, et al. (2021). Targeting and clearance of senescent foamy macrophages and senescent endothelial cells by antibody-functionalized mesoporous silica nanoparticles for alleviating aorta atherosclerosis. Biomaterials 269:120677.
  • Pillai SC, Borah A, Jindal A, et al. (2020). BioPerine encapsulated nanoformulation for overcoming drug-resistant breast cancers. Asian J Pharm Sci 15:701–12.
  • Qiu LY, Bae YH. (2006). Polymer architecture and drug delivery. Pharm Res 23:1–30.
  • Ramírez-Tortosa MC, Mesa MD, Aguilera MC, et al. (1999). Oral administration of a turmeric extract inhibits LDL oxidation and has hypocholesterolemic effects in rabbits with experimental atherosclerosis. Atherosclerosis 147:371–8.
  • Ramji DP. (2019). Polyunsaturated fatty acids and atherosclerosis: insights from pre-clinical studies. Eur J Lipid Sci Technol 121:1800029.
  • Ras RT, Geleijnse JM, Trautwein EA. (2014). LDL-cholesterol-lowering effect of plant sterols and stanols across different dose ranges: a meta-analysis of randomised controlled studies. Br J Nutr 112:214–9.
  • Rashid I, van Reyk DM, Davies MJ. (2007). Carnosine and its constituents inhibit glycation of low-density lipoproteins that promotes foam cell formation in vitro. FEBS Lett 581:1067–70.
  • Rodrigueza WV, Phillips MC, Williams KJ. (1998). Structural and metabolic consequences of liposome-lipoprotein interactions. Adv Drug Deliv Rev 32:31–43.
  • Rosenson RS. (2004). Statins in atherosclerosis: lipid-lowering agents with antioxidant capabilities. Atherosclerosis 173:1–12.
  • Ruehm SG, Corot C, Vogt P, et al. (2001). Magnetic resonance imaging of atherosclerotic plaque with ultrasmall superparamagnetic particles of iron oxide in hyperlipidemic rabbits. Circulation 103:415–22.
  • Ruiz-León AM, Lapuente M, Estruch R, Casas R. (2019). Clinical advances in immunonutrition and atherosclerosis: a review. Front Immunol 10:837.
  • Salama L, Pastor ER, Stone T, Mousa SA. (2020). Emerging nanopharmaceuticals and nanonutraceuticals in cancer management. Biomedicines 8:347.
  • Sanchez-Gaytan BL, Fay F, Lobatto ME, et al. (2015). HDL-mimetic PLGA nanoparticle to target atherosclerosis plaque macrophages. Bioconjug Chem 26:443–51.
  • Schiener M, Hossann M, Viola JR, et al. (2014). Nanomedicine-based strategies for treatment of atherosclerosis. Trends Mol Med 20:271–281.
  • Schini-Kerth VB, Auger C, Étienne-Selloum N, Chataigneau T. (2010). Polyphenol-induced endothelium-dependent relaxations. 60:133–175.
  • Scoditti E, Calabriso N, Massaro M, et al. (2012). Mediterranean diet polyphenols reduce inflammatory angiogenesis through MMP-9 and COX-2 inhibition in human vascular endothelial cells: a potentially protective mechanism in atherosclerotic vascular disease and cancer. Arch Biochem Biophys 527:81–89.
  • Shah R, Patel T, Freedman JE. (2018). Circulating extracellular vesicles in human disease. N Engl J Med 379:958–966.
  • Sharis PJ, Cannon CP, Loscalzo J. (1998). The antiplatelet effects of ticlopidine and clopidogrel. Ann Intern Med 129:394.
  • Sinha A, Shaporev A, Nosoudi N, et al. (2014). Nanoparticle targeting to diseased vasculature for imaging and therapy. Nanomed Nanotechnol, Biol Med 10:e1003–12.
  • Skålén K, Gustafsson M, Rydberg EK, et al. (2002). Subendothelial retention of atherogenic lipoproteins in early atherosclerosis. Nature 417:750–4.
  • Sofi F, Macchi C, Abbate R, et al. (2014). Mediterranean diet and health status: an updated meta-analysis and a proposal for a literature-based adherence score. Public Health Nutr 17:2769–82.
  • Soler-Rivas C, Espiń JC, Wichers HJ. (2000). Oleuropein and related compounds. J Sci Food Agric 80:1013–23.
  • Song Y, Zhang L-J, Li H, et al. (2013). Polyunsaturated fatty acid relatively decreases cholesterol content in THP-1 macrophage-derived foam cell: partly correlates with expression profile of CIDE and PAT members. Lipids Health Dis 12:111.
  • Sophie Maiocchi EB, Sydney T, Ana C, et al. (2020).Targeting of atherosclerotic plaque is achieved with polymeric nanoparticles encapsulating Nrf2 activator and LDL-like nanoparticles. bioRxiv
  • Squillaro T, Cimini A, Peluso G, et al. (2018). Nano-delivery systems for encapsulation of dietary polyphenols: an experimental approach for neurodegenerative diseases and brain tumors. Biochem Pharmacol 154:303–17.
  • Sukhova PLGK, Schönbeck U, Rabkin E. et al. (1999). Evidence for increased collagenolysis by interstitial collagenases-1 and -3 in vulnerable human atheromatous plaques. Circulation 99:2503–9.
  • Sun T, Simmons R, Huo D, et al. (2016). Targeted delivery of anti-miR-712 by VCAM1-binding Au nanospheres for atherosclerosis therapy. ChemNanoMat 2:400–6.
  • Takai S, Jin D, Kawashima H, et al. (2009). Anti-atherosclerotic effects of dihomo-γ-linolenic acid in ApoE-deficient mice. J Atheroscler Thromb 16:480–9.
  • Tangney CC, Rasmussen HE. (2013). Polyphenols, inflammation, and cardiovascular disease. Curr Atheroscler Rep 15:324.
  • Tarin C, Carrill M, Martin-Ventura JL, et al. (2015). Targeted gold-coated iron oxide nanoparticles for CD163 detection in atherosclerosis by MRI. Sci Rep 5:17135.
  • Taylor M, Moore S, Mourtas S, et al. (2011). Effect of curcumin-associated and lipid ligand-functionalized nanoliposomes on aggregation of the Alzheimer’s Aβ peptide. Nanomed Nanotechnol, Biol Med 7:541–50.
  • Tegos TJ, Kalodiki E, Sabetai MM, Nicolaides AN. (2001). The genesis of atherosclerosis and risk factors: a review. Angiology 52:89–98.
  • The Emerging Risk Factors Collaboration. (2009). Lipoprotein (a) concentration and the risk of coronary heart disease, stroke. JAMA 302:412–23.
  • Tinahones FJ, Rubio MA, Garrido-Sánchez L, et al. (2008). Green tea reduces LDL oxidability and improves vascular function. J Am Coll Nutr 27:209–13.
  • Tousoulis D, Plastiras A, Siasos G, et al. (2014). Omega-3 PUFAs improved endothelial function and arterial stiffness with a parallel antiinflammatory effect in adults with metabolic syndrome. Atherosclerosis 232:10–6.
  • Voloshyna I, Hai O, Littlefield MJ, et al. (2013). Resveratrol mediates anti-atherogenic effects on cholesterol flux in human macrophages and endothelium via PPARγ and adenosine. Eur J Pharmacol 698:299–309.
  • Wang B, Yantsen E, Larson T, et al. (2009). Plasmonic intravascular photoacoustic imaging for detection of macrophages in atherosclerotic plaques. Nano Lett 9:2212–7.
  • Wang D, Yan X, Xia M, et al. (2014). Coenzyme Q10 promotes macrophage cholesterol efflux by regulation of the activator protein-1/miR-378/ATP-binding cassette transporter G1-signaling pathway. Arterioscler Thromb Vasc Biol 34:1860–70.
  • Wang Q, Zhang M, Liang B, et al. (2011). Activation of AMP-activated protein kinase is required for berberine-induced reduction of atherosclerosis in mice: the role of uncoupling protein 2. PLoS One 6:e25436.
  • Wang R. (2012). Physiological implications of hydrogen sulfide: a whiff exploration that blossomed. Physiol Rev 92:791–896.
  • Wang Y-XJ. (2011). Superparamagnetic iron oxide based MRI contrast agents: current status of clinical application. Quant Imaging Med Surg 1:35–40.
  • Watson RDS, Chin BSP, Lip GYH. (2002). Antithrombotic therapy in acute coronary syndromes. BMJ 325:1348–51.
  • Weissleder R, Elizondo G, Wittenberg J, et al. (1990). Ultrasmall superparamagnetic iron oxide: characterization of a new class of contrast agents for MR imaging. Radiology 175:489–93.
  • Weissleder R, Lee AS, Fischman AJ, et al. (1991). Polyclonal human immunoglobulin G labeled with polymeric iron oxide: antibody MR imaging. Radiology 181:245–9.
  • Widmer RJ, Freund MA, Flammer AJ, et al. (2013). Beneficial effects of polyphenol-rich olive oil in patients with early atherosclerosis. Eur J Nutr 52:1223–31.
  • Woollard KJ, Geissmann F. (2010). Monocytes in atherosclerosis: subsets and functions. Nat Rev Cardiol 7:77–86.
  • World Health Organization. (2015). Cardiovascular and W. H. O. C. diseases (CVDs). https://www.who.int/health-topics/cardiovascular-diseases#tab=tab_1.
  • Wu YW, Goubran H, Seghatchian J, Burnouf T. (2016). Smart blood cell and microvesicle-based Trojan horse drug delivery: merging expertise in blood transfusion and biomedical engineering in the field of nanomedicine. Transfus Apher Sci 54:309–18.
  • Xue Y, Wu Y, Wang Q, et al. (2019). Cellular vehicles based on neutrophils enable targeting of atherosclerosis. Mol Pharm 16:3109–20.
  • Yallapu MM, Jaggi M, Chauhan SC. (2013). Curcumin nanomedicine: a road to cancer therapeutics. Curr Pharm Des 19:1994–2010.
  • Yamakuchi M, Bao C, Ferlito M, Lowenstein CJ. (2008). Epigallocatechin gallate inhibits endothelial exocytosis. Biol Chem 389:935–41.
  • Yang L, Zang G, Li J, et al. (2020). Cell-derived biomimetic nanoparticles as a novel drug delivery system for atherosclerosis: predecessors and perspectives. Regen Biomater 7:349–58.
  • Younes M, Aggett P, Aguilar F, et al. (2018). Scientific opinion on the safety of monacolins in red yeast rice. EFSA J 16:e05368.
  • Zaitsev S, Danielyan K, Murciano J-C, et al. (2006). Human complement receptor type 1-directed loading of tissue plasminogen activator on circulating erythrocytes for prophylactic fibrinolysis. Blood 108:1895–902.
  • Zanardo RCO, Brancaleone V, Distrutti E, et al. (2006). Hydrogen sulfide is an endogenous modulator of leukocyte‐mediated inflammation. FASEB J 20:2118–20.
  • Zhang XQ, Even-Or O, Xu X, et al. (2015). Nanoparticles containing a liver X receptor agonist inhibit inflammation and atherosclerosis. Adv Healthc Mater 4:228–36.
  • Zhang Y, Koradia A, Kamato D, et al. (2019). Treatment of atherosclerotic plaque: perspectives on theranostics. J Pharm Pharmacol 71:1029–43.
  • Zhang YJ, Yang SH, Li MH, et al. (2014). Berberine attenuates adverse left ventricular remodeling and cardiac dysfunction after acute myocardial infarction in rats: role of autophagy. Clin Exp Pharmacol Physiol 41:995–1002.
  • Zhao ZZ, Wang Z, Li G-H, et al. (2011). Hydrogen sulfide inhibits macrophage-derived foam cell formation. Exp Biol Med 236:169–76.
  • Zhu L, Zhang D, Zhu H, et al. (2018). Berberine treatment increases Akkermansia in the gut and improves high-fat diet-induced atherosclerosis in Apoe-/- mice. Atherosclerosis 268:117–26.
  • Zimmermann TS, Lee ACH, Akinc A, et al. (2006). RNAi-mediated gene silencing in non-human primates. Nature 441:111–4.