2,648
Views
9
CrossRef citations to date
0
Altmetric
Research Article

Sustained intrathecal delivery of amphotericin B using an injectable and biodegradable thermogel

ORCID Icon, , &
Pages 499-509 | Received 02 Jan 2021, Accepted 15 Feb 2021, Published online: 04 Mar 2021

References

  • Asthana S, Jaiswal AK, Gupta PK, et al. (2015). Th-1 biased immunomodulation and synergistic antileishmanial activity of stable cationic lipid-polymer hybrid nanoparticle: biodistribution and toxicity assessment of encapsulated amphotericin B. Eur J Pharm Biopharm 89:62–73.
  • Bao X, Zhu L, Huang X, et al. (2017). 3D biomimetic artificial bone scaffolds with dual-cytokines spatiotemporal delivery for large weight-bearing bone defect repair. Sci Rep 7:7814.
  • Carroll SF, Guillot L, Qureshi ST. (2007). Mammalian model hosts of cryptococcal infection. Comp Med 57:9–17.
  • Chan PS, Xian JW, Li Q, et al. (2019). Biodegradable Thermosensitive PLGA-PEG-PLGA Polymer for Non-irritating and Sustained Ophthalmic Drug Delivery. Aaps J 21:59.
  • Chen X, Wang M, Yang X, et al. (2019). Injectable hydrogels for the sustained delivery of a HER2-targeted antibody for preventing local relapse of HER2+ breast cancer after breast-conserving surgery. Theranostics 9:6080–98.
  • Chen X, Zhang J, Wu K, et al. (2020). Visualizing the in vivo evolution of an injectable and thermosensitive hydrogel using tri-modal bioimaging. Small Methods 4:2000310.
  • Chen Y, Li Y, Shen W, et al. (2016). Controlled release of liraglutide using thermogelling polymers in treatment of diabetes. Sci Rep 6:31593.
  • Chen Y, Luan J, Shen W, et al. (2016). Injectable and thermosensitive hydrogel containing liraglutide as a long-acting antidiabetic system. ACS Appl Mater Interfaces 8:30703–13.
  • Cho H, Gao J, Kwon GS. (2016). PEG-b-PLA micelles and PLGA-b-PEG-b-PLGA sol-gels for drug delivery. J Control Release 240:191–201.
  • DuVall GA, Tarabar D, Seidel RH, et al. (2009). Phase 2: a dose-escalation study of OncoGel (ReGel/paclitaxel), a controlled-release formulation of paclitaxel, as adjunctive local therapy to external-beam radiation in patients with inoperable esophageal cancer. Anticancer Drugs 20:89–95.
  • Elliott Donaghue I, Tator CH, Shoichet MS. (2015). Sustained delivery of bioactive neurotrophin-3 to the injured spinal cord. Biomater Sci 3:65–72.
  • Elstad NL, Fowers KD. (2009). OncoGel (ReGel/paclitaxel)-clinical applications for a novel paclitaxel delivery system. Adv Drug Deliv Rev 61:785–94.
  • Fang M, Lü TM, Ma AD, et al. (2012). Comparative pharmacokinetics of continuous and conventional intrathecal amphotericin B in rabbits. Antimicrob Agents Chemother 56:5253–7.
  • Fries BC, Lee SC, Kennan R, et al. (2005). Phenotypic switching of Cryptococcus neoformans can produce variants that elicit increased intracranial pressure in a rat model of cryptococcal meningoencephalitis. Infect Immun 73:1779–87.
  • Hamill RJ. (2013). Amphotericin B formulations: a comparative review of efficacy and toxicity. Drugs 73:919–34.
  • Ho MT, Teal CJ, Shoichet MS. (2019). A hyaluronan/methylcellulose-based hydrogel for local cell and biomolecule delivery to the central nervous system. Brain Res Bull 148:46–54.
  • Hoang Thi TT, Sinh LH, Huynh DP, et al. (2020). Self-assemblable polymer smart-blocks for temperature-induced injectable hydrogel in biomedical applications. Front Chem 8:19.
  • Householder KT, Dharmaraj S, Sandberg DI, et al. (2019). Fate of nanoparticles in the central nervous system after intrathecal injection in healthy mice. Sci Rep 9:12587.
  • Hudson SP, Langer R, Fink GR, et al. (2010). Injectable in situ cross-linking hydrogels for local antifungal therapy. Biomaterials 31:1444–52.
  • Kumar R, Sahoo GC, Pandey K, et al. (2015). Study the effects of PLGA-PEG encapsulated amphotericin B nanoparticle drug delivery system against Leishmania donovani. Drug Deliv 22:383–8.
  • Lei K, Chen Y, Wang J, et al. (2017). Non-invasive monitoring of in vivo degradation of a radiopaque thermoreversible hydrogel and its efficacy in preventing post-operative adhesions. Acta Biomater 55:396–409.
  • Li K, Yu L, Liu X, et al. (2013). A long-acting formulation of a polypeptide drug exenatide in treatment of diabetes using an injectable block copolymer hydrogel. Biomaterials 34:2834–42.
  • Lin FW, Chen PY, Wei KC, et al. (2017). Rapid in situ mri traceable gel-forming dual-drug delivery for synergistic therapy of brain tumor. Theranostics 7:2524–36.
  • Liu D, Jiang T, Cai W, et al. (2016). An in situ gelling drug delivery system for improved recovery after spinal cord injury. Adv Healthc Mater 5:1513–21.
  • Luan J, Zhang Z, Shen W, et al. (2018). Thermogel loaded with low-dose paclitaxel as a facile coating to alleviate periprosthetic fibrous capsule formation. ACS Appl Mater Interfaces 10:30235–46.
  • Matthes K, Mino-Kenudson M, Sahani DV, et al. (2007). EUS-guided injection of paclitaxel (OncoGel) provides therapeutic drug concentrations in the porcine pancreas (with video). Gastrointest Endosc 65:448–53.
  • Migone C, Ford N, Garner P, et al. (2018). Updating guidance for preventing and treating cryptococcal disease: how evidence and decisions interface. Cochrane Database Syst Rev 11:ED000130.
  • Najvar LK, Bocanegra R, Graybill JR. (1999). An alternative animal model for comparison of treatments for cryptococcal meningitis. Antimicrob Agents Chemother 43:413–4.
  • Nakama T, Yamashita S, Hirahara T, et al. (2015). Usefulness of intraventricular infusion of antifungal drugs through Ommaya reservoirs for cryptococcal meningitis treatment. J Neurol Sci 358:259–62.
  • Nau R, Blei C, Eiffert H. (2020). Intrathecal Antibacterial and Antifungal Therapies. Clin Microbiol Rev 33:e00190-19.
  • Perfect JR, Dismukes WE, Dromer F, et al. (2010). Clinical practice guidelines for the management of cryptococcal disease: 2010 update by the infectious diseases society of america. Clin Infect Dis 50:291–322.
  • Rajasingham R, Smith RM, Park BJ, et al. (2017). Global burden of disease of HIV-associated cryptococcal meningitis: an updated analysis. Lancet Infect Dis 17:873–81.
  • Shi E, Jiang X, Kazui T, et al. (2007). Controlled low-pressure perfusion at the beginning of reperfusion attenuates neurologic injury after spinal cord ischemia. J Thorac Cardiovasc Surg 133:942–8.
  • Song YH, Agrawal NK, Griffin JM, et al. (2019). Recent advances in nanotherapeutic strategies for spinal cord injury repair. Adv Drug Deliv Rev 148:38–59.
  • Sosa L, Clares B, Alvarado HL, et al. (2017). Amphotericin B releasing topical nanoemulsion for the treatment of candidiasis and aspergillosis. Nanomedicine 13:2303–12.
  • Tarlov IM. (1972). Acute spinal cord compression paralysis. J Neurosurg 36:10–20.
  • Thambi T, Li Y, Lee DS. (2017). Injectable hydrogels for sustained release of therapeutic agents. J Control Release 267:57–66.
  • Tyler B, Fowers KD, Li KW, et al. (2010). A thermal gel depot for local delivery of paclitaxel to treat experimental brain tumors in rats. J Neurosurg 113:210–7.
  • Wang Y, Cooke MJ, Sachewsky N, et al. (2013). Bioengineered sequential growth factor delivery stimulates brain tissue regeneration after stroke. J Control Release 172:1–11.
  • Wilems TS, Sakiyama-Elbert SE. (2015). Sustained dual drug delivery of anti-inhibitory molecules for treatment of spinal cord injury. J Control Release 213:103–11.
  • Williamson PR, Jarvis JN, Panackal AA, et al. (2017). Cryptococcal meningitis: epidemiology, immunology, diagnosis and therapy. Nat Rev Neurol 13:13–24.
  • Xiao Y, Fan Y, Wang W, et al. (2014). Novel GO-COO-β-CD/CA inclusion: its blood compatibility, antibacterial property and drug delivery. Drug Deliv 21:362–9.
  • Xie F, Ji S, Cheng Z. (2015). In vitro dissolution similarity factor (f2) and in vivo bioequivalence criteria, how and when do they match? Using a BCS class II drug as a simulation example. Eur J Pharm Sci 66:163–72.
  • Yang M, Xie S, Li Q, et al. (2014). Effects of polyvinylpyrrolidone both as a binder and pore-former on the release of sparingly water-soluble topiramate from ethylcellulose coated pellets. Int J Pharm 465:187–96.
  • Yang X, Chen X, Wang Y, et al. (2020). Sustained release of lipophilic gemcitabine from an injectable polymeric hydrogel for synergistically enhancing tumor chemoradiotherapy. Chem Eng J 396:125320.
  • Yu L, Chang G, Zhang H, et al. (2007). Temperature-induced spontaneous sol-gel transitions of poly(D,L-lactic acid-co-glycolic acid)-b-poly(ethylene glycol)-b-poly(D,L-lactic acid-co-glycolic acid) triblock copolymers and their end-capped derivatives in water. J Polym Sci A Polym Chem 45:1122–33.
  • Yu L, Chang GT, Zhang H, et al. (2008). Injectable block copolymer hydrogels for sustained release of a PEGylated drug. Int J Pharm 348:95–106.
  • Yu L, Sheng W, Yang D, et al. (2013). Design of molecular parameters to achieve block copolymers with a powder form at dry state and a temperature-induced sol-gel transition in water without unexpected gelling prior to heating. Macromol Res 21:207–15.
  • Yu L, Zhang Z, Ding J. (2011). Influence of LA and GA sequence in the PLGA block on the properties of thermogelling PLGA-PEG-PLGA block copolymers. Biomacromolecules 12:1290–7.
  • Yu L, Zhang Z, Zhang H, et al. (2009). Mixing a sol and a precipitate of block copolymers with different block ratios leads to an injectable hydrogel. Biomacromolecules 10:1547–53.
  • Yu L, Zhang Z, Zhang H, et al. (2010). Biodegradability and biocompatibility of thermoreversible hydrogels formed from mixing a sol and a precipitate of block copolymers in water. Biomacromolecules 11:2169–78.
  • Yuchong C, Jianghan C, Hai W, et al. (2011). Lumbar puncture drainage with intrathecal injection of amphotericin B for control of cryptococcal meningitis. Mycoses 54:e248–e251.
  • Zhang L, Shen W, Luan J, et al. (2015). Sustained intravitreal delivery of dexamethasone using an injectable and biodegradable thermogel. Acta Biomater 23:271–81.
  • Zhuang Y, Yang X, Li Y, et al. (2019). Sustained release strategy designed for lixisenatide delivery to synchronously treat diabetes and associated complications. ACS Appl Mater Interfaces 11:29604–18.
  • Zumbuehl A, Ferreira L, Kuhn D, et al. (2007). Antifungal hydrogels. Proc Natl Acad Sci USA 104:12994–8.