1,855
Views
12
CrossRef citations to date
0
Altmetric
Research Article

Lipid bubbles combined with low-intensity ultrasound enhance the intratumoral accumulation and antitumor effect of pegylated liposomal doxorubicin in vivo

, , , , , & show all
Pages 530-541 | Received 21 Dec 2020, Accepted 23 Feb 2021, Published online: 09 Mar 2021

References

  • Barenholz Y. (2012). Doxil®-the first FDA-approved nano-drug: lessons learned. J Control Release 160:117–34.
  • Bush N, Healey A, Shah A, et al. (2020). Theranostic attributes of acoustic cluster therapy and its use for enhancing the effectiveness of liposomal doxorubicin treatment of human triple negative breast cancer in mice. Front Pharmacol 11:75.
  • Chabner BA, Roberts TG. (2005). Timeline: chemotherapy and the war on cancer. Nat Rev Cancer 5:65–72.
  • Chidambaram M, Manavalan R, Kathiresan K. (2011). Nanotherapeutics to overcome conventional cancer chemotherapy limitations. J Pharm Pharm Sci 14:67–77.
  • Danhier F. (2016). To exploit the tumor microenvironment: since the EPR effect fails in the clinic, what is the future of nanomedicine? J Control Release 244:108–21.
  • De Jong N, Frinking PJA, Bouakaz A, et al. (2000). Optical imaging of contrast agent microbubbles in an ultrasound field with a 100-MHz camera. Ultrasound Med Biol 26:487–92.
  • Egawa G, Nakamizo S, Natsuaki Y, et al. (2013). Intravital analysis of vascular permeability in mice using two-photon microscopy. Sci Rep 3:1932.
  • Fang J, Nakamura H, Maeda H. (2011). The EPR effect: unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect. Adv Drug Deliv Rev 63:136–51.
  • Fujishiro S, Mitsumori M, Nishimura Y, et al. (1998). Increased heating efficiency of hyperthermia using an ultrasound contrast agent: a phantom study. Int J Hyperthermia 14:495–502.
  • Gabizon A, Catane R, Uziely B, et al. (1994). Prolonged circulation time and enhanced accumulation in malignant exudates of doxorubicin encapsulated in polyethylene-glycol coated liposomes. Cancer Res 54:987–92.
  • Gabizon A, Shmeeda H, Barenholz Y. (2003). Pharmacokinetics of pegylated liposomal doxorubicin: review of animal and human studies. Clin Pharmacokinet 42:419–36.
  • Gabizon AA, Barenholz Y, Bialer M. (1993). Prolongation of the circulation time of doxorubicin encapsulated in liposomes containing a polyethylene glycol-derivatized phospholipid: pharmacokinetic studies in rodents and dogs. Pharm Res 10:703–8.
  • Golombek SK, May J-N, Theek B, et al. (2018). Tumor targeting via EPR: strategies to enhance patient responses. Adv Drug Deliv Rev 130:17–38.
  • Hofmann M, McCormack E, Mujic M, et al. (2009). Increased plasma colloid osmotic pressure facilitates the uptake of therapeutic macromolecules in a xenograft tumor model. Neoplasia 11:812–22.
  • Hori K, Suzuki M, Tanda S, et al. (1991). Fluctuations in tumor blood flow under normotension and the effect of angiotensin II-induced hypertension. Jpn J Cancer Res 82:1309–16.
  • Kondo T, Umemura S, Tanabe K, et al. (2000). Novel therapeutic applications of ultrasound utilization of thermal and cavitational effects. Jpn J Hyperthermic Oncol 16:203–16.
  • Kotopoulis S, Stigen E, Popa M, et al. (2017). Sonoporation with Acoustic Cluster Therapy (ACT®) induces transient tumour volume reduction in a subcutaneous xenograft model of pancreatic ductal adenocarcinoma. J Control Release 245:70–80.
  • Kudo N, Okada K, Yamamoto K. (2009). Sonoporation by single-shot pulsed ultrasound with microbubbles adjacent to cells. Biophys J 96:4866–76.
  • Lu CT, Zhao Y-Z, Wu Y, et al. (2011). Experiment on enhancing antitumor effect of intravenous epirubicin hydrochloride by acoustic cavitation in situ combined with phospholipid-based microbubbles. Cancer Chemother Pharmacol 68:343–8.
  • Maeda H. (2001). The enhanced permeability and retention (EPR) effect in tumor vasculature: the key role of tumor-selective macromolecular drug targeting. Adv Enzyme Regul 41:189–207.
  • Martin KH, Dayton PA. (2013). Current status and prospects for microbubbles in ultrasound theranostics. Wiley Interdiscip Rev Nanomed Nanobiotechnol 5:329–45.
  • Matsumura Y, Maeda H. (1986). A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res 46:6387–92.
  • Minchinton AI, Tannock IF. (2006). Drug penetration in solid tumours. Nat Rev Cancer 6:583–92.
  • Ogawara K, Un K, Tanaka K, et al. (2009). In vivo anti-tumor effect of PEG liposomal doxorubicin (DOX) in DOX-resistant tumor-bearing mice: involvement of cytotoxic effect on vascular endothelial cells. J Control Release 133:4–10.
  • Omata D, Maruyama T, Unga J, et al. (2019). Effects of encapsulated gas on stability of lipid-based microbubbles and ultrasound-triggered drug delivery. J Control Release 311–312:65–73.
  • Paefgen V, Doleschel D, Kiessling F. (2015). Evolution of contrast agents for ultrasound imaging and ultrasound-mediated drug delivery. Front Pharmacol 6:197.
  • Petersen GH, Alzghari SK, Chee W, et al. (2016). Meta-analysis of clinical and preclinical studies comparing the anticancer efficacy of liposomal versus conventional non-liposomal doxorubicin. J Control Release 232:255–64.
  • Shimizu R, Suzuki R. Kudo N. (2020). Visualization of endothelial cell damage caused by ultrasonically induced microbubble oscillation inside a capillary phantom. Paper presented at the 2020 IEEE International Ultrasonics Symposium (IUS); September 7–11; Las Vegas, NV.
  • Soloman R, Gabizon AA. (2008). Clinical pharmacology of liposomal anthracyclines: focus on pegylated liposomal doxorubicin. Clin Lymphoma Myeloma 8:21–32.
  • Sonoda S, Tachibana K, Uchino E, et al. (2007). Inhibition of melanoma by ultrasound-microbubble-aided drug delivery suggests membrane permeabilization. Cancer Biol Ther 6:1276–83.
  • Sorace AG, Warram JM, Umphrey H, Hoyt K. (2012). Microbubble-mediated ultrasonic techniques for improved chemotherapeutic delivery in cancer. J Drug Target 20:43–54.
  • Suzuki R, Oda Y, Omata D, et al. (2016). Tumor growth suppression by the combination of nanobubbles and ultrasound. Cancer Sci 107:217–23.
  • Taurin S, Nehoff H, Greish K. (2012). Anticancer nanomedicine and tumor vascular permeability; where is the missing link? J Control Release 164:265–75.
  • Ueno Y, Sonoda S, Suzuki R, et al. (2011). Combination of ultrasound and bubble liposome enhance the effect of doxorubicin and inhibit murine osteosarcoma growth. Cancer Biol Ther 12:270–7.
  • Unga J, Kageyama S, Suzuki R, et al. (2020). Scale-up production, characterization and toxicity of a freeze-dried lipid-stabilized microbubble formulation for ultrasound imaging and therapy. J Liposome Res 30:297–304.
  • Unga J, Omata D, Kudo N, et al. (2019). Development and evaluation of stability and ultrasound response of DSPC-DPSG-based freeze-dried microbubbles. J Liposome Res 29:368–74.
  • Watanabe Y, Aoi A, Horie S, et al. (2008). Low-intensity ultrasound and microbubbles enhance the antitumor effect of cisplatin. Cancer Sci 99:2525–31.
  • Wust P, Hildebrandt B, Sreenivasa G, et al. (2002). Hyperthermia in combined treatment of cancer. Lancet Oncol 3:487–97.
  • Yokoe I, Murahata Y, Harada K, et al. (2020). A pilot study on efficacy of lipid bubbles for theranostics in dogs with tumors. Cancers 12:2423.
  • Yuan F, Leunig M, Huang SK, et al. (1994). Mirovascular permeability and interstitial penetration of sterically stabilized (stealth) liposomes in a human tumor xenograft. Cancer Res 54:3352–6.
  • Zhu F, Jiang Y, Luo F, Li P. (2015). Effectiveness of localized ultrasound-targeted microbubble destruction with doxorubicin liposomes in H22 mouse hepatocellular carcinoma model. J Drug Target 23:323–34.