2,552
Views
8
CrossRef citations to date
0
Altmetric
Research Article

Electrosprayed minocycline hydrochloride-loaded microsphere/SAIB hybrid depot for periodontitis treatment

ORCID Icon, , , , , & show all
Pages 620-633 | Received 15 Jan 2021, Accepted 25 Mar 2021, Published online: 27 Mar 2021

References

  • Almazin SM, Dziak R, Andreana S, et al. (2009). The effect of doxycycline hyclate, chlorhexidine gluconate, and minocycline hydrochloride on osteoblastic proliferation and differentiation in vitro. J Periodontol 80:999–1005.
  • Andrés MT, Chung WO, Roberts MC. (1998). Antimicrobial susceptibilities of Porphyromonas gingivalis, Prevotella intermedia, and Prevotella nigrescens spp. Isolated in Spain. Antimicrob Agents Chemother 42:3022–3.
  • Cai X, Luan Y, Dong Q, et al. (2011). Sustained release of 5-fluorouracil by incorporation into sodium carboxymethylcellulose sub-micron fibers. Int J Pharm 419:240–6.
  • Calasans-Maia MD, Junior CABB, Soriano-Souza CA, et al. (2019). Microspheres of alginate encapsulated minocycline-loaded nanocrystalline carbonated hydroxyapatite: therapeutic potential and effects on bone regeneration. Int J Nanomedicine 14:4559–71.
  • Chen XY, Zhang Q, Li JL, et al. (2018). Rattle-structured rough nanocapsules with in-situ-formed gold nanorod cores for complementary gene/chemo/photothermal therapy. ACS Nano 12:5646–56.
  • Dan Z, Jinlin S, Almassri HNS. (2020). Effect of microsphere size on the drug release and experimental characterization of an electrospun naringin-loaded microsphere/sucrose acetate isobutyrate (SAIB) depot. J Polym Adv Technol 31:1–12.
  • Do MP, Neut C, Metz H, et al. (2015). Mechanistic analysis of PLGA/HPMC-based in-situ forming implants for periodontitis treatment. Eur J Pharm Biopharm 94:273–83.
  • Dodiuk-Gad RP, de Morentin HM, Schafer J, et al. (2006). Minocycline-induced cutaneous hyperpigmentation: confocal laser scanning microscope analysis. J Eur Acad Dermatol Venereol 20:435–9.
  • Ebadi M, Bullo S, Buskaran K, et al. (2019). Synthesis and properties of magnetic nanotheranostics coated with polyethylene glycol/5-fluorouracil/layered double hydroxide. Int J Nanomedicine 14:6661–78.
  • Ford Versy p. A N, Pack DW, Braatz RD. (2013). Mathematical modeling of drug delivery from autocatalytically degradable PLGA microspheres-a review. J Control Release 165:29–37.
  • Fu J, Dong XX, Zeng ZP, et al. (2017). Preparation and physicochemical characterization of T-OA PLGA microspheres. Chin J Nat Med 15:912–6.
  • Furtmann B, Tang J, Kramer S, et al. (2017). Electrospray synthesis of PLGA nanoparticles enca- -psulating peptides to enhance proliferation of antigen-specific CD8(+) T cells. J Pharm 106:3316–27.
  • Gibson I, Momeni A, Filiaggi M. (2019). Minocycline-loaded calcium polyphosphate glass microspheres as a potential drug-delivery agent for the treatment of periodontitis. J Appl Biomater Fund Mater 17:228080001986363.
  • Gomes PS, Fernandes MH. (2007). Effect of therapeutic levels of doxycycline and minocycline in the proliferation and differentiation of human bone marrow osteoblastic cells. Arch Oral Biol 52:251–9.
  • Gu B, Sun X, Papadimitrakopoulos F, et al. (2016). Seeing is believing, PLGA microsphere degra- -dation revealed in PLGA microsphere/PVA hydrogel composites. J Control Rele Ase 228:170–8.
  • Harada S, Takahashi N. (2011). Control of bone resorption by RANKL-RANK system. Clin Calcium 21:1121–30.
  • Harloff-Helleberg S, Fliervoet LAL, Fanø M, et al. (2019). Exploring the mucoadhesive behavior of sucrose acetate isobutyrate: a novel excipient for oral delivery of biopharmaceuticals. Drug Deliv 26:532–41.
  • Haroosh HJ, Dong Y, Lau K-T. (2014). Tetracycline hydrochloride (TCH)-loaded drug carrier based on PLA:PCL nanofibre mats: experimental characterisation and release kinetics modelling. J Mater Sci 49:6270–81.
  • Hong Y, Li Y, Yin Y, et al. (2008). Electrohydrodynamic atomization of quasi-monodisperse drug-loaded spherical/wrinkled microparticles. J Aerosol Ence 39:525–36.
  • James M, Anderson , et al. (2012). Biodegradation and biocompatibility of PLA and PLGA microsphere. Adv Drug Delivery Rev 64:72–82.
  • Kashi TSJ, Eskandarion S, Esfandyari-Manesh M, et al. (2012). Improved drug loading and antibacterial activity of minocycline-loaded PLGA nanoparticles prepared by solid/oil/water ion pairing method. Int J Nanomedicine 7:221–34.
  • Lee ES, Kwon MJ, Lee H, et al. (2006). In vitro study of lysozyme in poly(lactide-co-glycolide) microspheres with sucrose acetate isobutyrate. Eur J Pharm Sci 29:435–41.
  • Lin X, Xu Y, Tang X, et al. (2015). A uniform ultra-small microsphere/SAIB hybrid depot with low burst release for long-term continuous drug release. Pharm Res 32:3708–21.
  • Liu D, Yang PS, Hu DY, et al. (2013). Minocycline hydrochloride liposome controlled-release gel improves rat experimental periodontitis. Hua Xi Kou Qiang Yi Xue Za Zhi 31:592–6.
  • Ma YH, Song JL, Almassri HNS, et al. (2020). Minocycline-loaded PLGA electrospun membra- -ne prevents alveolar bone loss in experimental peridontitis. Drug Deliv 27:151–60.
  • Mou J, Liu Z, Liu J, et al. (2019). Hydrogel containing minocycline and zinc oxide-loaded serum albumin nanopartical for periodontitis application: preparation, characterization and evaluation. Drug Deliv 26:179–87.
  • Munasur SL, Turawa EB, Chikte UME, et al. (2020). Mechanical debridement with antibiotics in the treatment of chronic periodontitis: effect on systemi biomarkers - a systematic review. IJERPH 17:5601.
  • Nagasawa T, Arai M, Togari A. (2011). Inhibitory effect of minocycline on osteoclastogenesis in mouse bone marrow cells. Arch Oral Biol 56:924–31.
  • Naoko T, Kazuyuki I, Tetsuo K, et al. (2007). Susceptibility of actinobacillus actinomycetecomitans to six antibiotics decreases as biofilm matures. J Antimicrob Chemother 59:59–65.
  • Nazir MA. (2017). Prevalence of periodontal disease, its association with systemic diseases and prevention. Int J Health Ences 11:72–80.
  • Okamoto-Shibayama K, Sekino J, Yoshikawa K, et al. (2017). Antimicrobial susceptibility profiles of oral Treponema species. Anaerobe 48:242–8.
  • Oliveira LFD, Jorge AO, Santos SS. (2006). In vitro minocycline activity on superinfecting microorganisms isolated from chronic periodontitis patients. Braz Oral Res 20:202–6.
  • Pang ZQ, Xu PC, Zhang JJ, et al. (2014). Local delivery of minocycline-loaded PEG-PLA nanoparticles for the enhanced treatment of periodontitis in dogs. Int J Nanomedicine 9:3963–70.
  • Park CH, Lee J. (2009). Electrosprayed polymer particles: effect of the solvent properties. J Appl Polym Sci 114:430–7.
  • Park Chan H, Abramson ZR, Taba M, et al. (2007). Three-dimensional micro-computed tomographic imaging of alveolar bone in experimental bone loss or repair. J Periodontol 78:273–81.
  • Ritger PL, Peppas NA. (1987). A simple equation for description of solute release I. Fickian and non-fickian release from non-swellable devices in the form of slabs,spheres, cylinders or discs[J]. J Control Release 5:23–36.
  • Shao HY, Zhang YG, Wu XH. (2018). Effects of inhibitory concentration minocycline on the proliferation, differentiation, and mineralization of osteoblasts. West China J Stomatol 36:140–5.
  • Siepmann J, Elkharraz K, Siepmann F, Klose D. (2005). How autocatalysis accelerates drug release from PLGA-based microparticles: a quantitative treatment. Biomacromolecules 6:2312–9.
  • Vandekerckhove BN, Quirynen M, van Steenberghe D. (1998). The use of locally delivered minocycline in the treatment of chronic periodontitis. A review of the literature. J Clin Periodontol 25:964–8.
  • Wang H, Ashton R, Hensel JA, et al. (2020). RANKL-targeted combination therapy with osteoprotegerin variant devoid of TRAIL binding exerts biphasic effects on skeletal remodeling and antitumor immunity. Mol Cancer Ther 19:2585–97.
  • Wang JW, Xu JH, Li J, et al. (2016). Improvement of the antitumor efficacy of intratumoral administration of cucurbitacin poly(lactic-co-glycolic acid) microspheres incorporated in in situ-forming sucrose acetate isobutyrate depots. J Pharm Sci 105:205–11.
  • Wang LN, Zheng X, Wu F, et al. (2018). Delivery of radix ophiopogonis polysaccharide via sucrose acetateisobutyrate-based in situ forming systems alone or combined with itsmono-PEGylation. Drug Deliv 25:267–77.
  • Wang XX, Wu DH, Chen TK, et al. (2012). Dissolution of minocycline hydrochloride-ointment in extended-release drug delivery system. J Dental Prevent Treat 11:579–83.
  • Xu Q, Chin SE, Wang CH, et al. (2013). Mechanism of drug release from double-walled PDLLA(PLGA) microspheres. Biomaterials 34:3902–11.
  • Xu XC, Chen H, Zhang X, et al. (2014). Simvastatin prevents alveolar bone loss in an experimental rat model of periodontitis after ovariectomy. J Transl Med 12:284.
  • Yang X, Almassri HNS, Zhang Q, et al. (2019). Electrosprayed naringin-loaded microsphere/SAIB hybrid depots enhance bone formation in a mouse calvarial defect model. Drug Deliv 26:137–46.
  • Yang X, Almassri HNS, Zhang QY, et al. (2019). Electrosprayed naringin-loaded microsphere/SAIB hybrid depots enhance bone formation in a mouse calvarial defect model. Drug Deliv 26:137–46.
  • Yang Z, Liang X, Jiang X, et al. (2018). Development and evaluation of minocycline hydrochloride-loaded in situ cubic liquid crystal for intra-periodontal pocket administration. Molecules (Basel, Switzerland) 23:2275.
  • Yao S, Liu H, Yu S, et al. (2016). Drug-nanoencapsulated PLGA microspheres prepared by emulsion electrospray with controlled release behavior. Regen Biomater 3:309–17.
  • Zhang XK, Han W, Fan DZ. (2014). Drug release properties of poly (lactic-co-glycolic acid) coatings. J Function Polymers 27:219–23.