2,007
Views
5
CrossRef citations to date
0
Altmetric
Research Article

The PLGA nanoparticles for sustainable release of CGRP to ameliorate the inflammatory and vascular disorders in the lung of CGRP-deficient rats

ORCID Icon, , , , , , & show all
Pages 865-872 | Received 29 Jan 2021, Accepted 08 Mar 2021, Published online: 07 May 2021

References

  • Edvinsson L, Haanes KA, Warfvinge K, et al. (2018). CGRP as the target of new migraine therapies – successful translation from bench to clinic. Nat Rev Neurol 14:338–50.
  • Dakhama A, Larsen GL, Gelfand EW. (2004). Calcitonin gene-related peptide: role in airway homeostasis. Curr Opin Pharmacol 4:215–20.
  • Lv T, Liang W, Li L, et al. (2019). Novel calcitonin gene-related peptide/chitosan-strontium-calcium phosphate cement: enhanced proliferation of human umbilical vein endothelial cells in vitro. J Biomed Mater Res B Appl Biomater 107:19–28.
  • Springer J, Amadesi S, Trevisani M, et al. (2004). Effects of alpha calcitonin gene-related peptide in human bronchial smooth muscle and pulmonary artery. Regul Pept 118:127–34.
  • Carucci JA, Ignatius R, Wei Y, et al. (2000). Calcitonin gene-related peptide decreases expression of HLA-DR and CD86 by human dendritic cells and dampens dendritic cell-driven t cell-proliferative responses via the type I calcitonin gene-related peptide receptor. J Immunol 164:3494–9.
  • Mullins MW, Ciallella J, Rangnekar V, et al. (1993). Characterization of a calcitonin gene-related peptide (CGRP) receptor on mouse bone marrow cells. Regul Pept 49:65–72.
  • Abello J, Kaiserlian D, Cuber JC, et al. (1991). Characterization of calcitonin gene-related peptide receptors and adenylate cyclase response in the murine macrophage cell line P388 D1. Neuropeptides 19:43–9.
  • McGillis JP, Humphreys S, Reid S. (1991). Characterization of functional calcitonin gene-related peptide receptors on rat lymphocytes. J Immunol 147:3482–9.
  • Wimalawansa SJ. (1997). Amylin, calcitonin gene-related peptide, calcitonin, and adrenomedullin: a peptide superfamily. Crit Rev Neurobiol 11:167–239.
  • Kumar A, Potts JD, DiPette DJ. (2019). Protective role of α-calcitonin gene-related peptide in cardiovascular diseases. Front Physiol 10: 821.
  • Wang W, Sun W, Wang X. (2004). Intramuscular gene transfer of CGRP inhibits neointimal hyperplasia after balloon injury in the rat abdominal aorta. Am J Physiol Heart Circulat Physiol 287:H1582–H1589.
  • Chattergoon NN, D'Souza FM, Deng W, et al. (2005). Antiproliferative effects of calcitonin gene-related peptide in aortic and pulmonary artery smooth muscle cells. Am J Physiol Lung Cell Mol Physiol 288:L202–L211.
  • Zheng S, Li W, Xu M, et al. (2010). Calcitonin gene-related peptide promotes angiogenesis via AMP-activated protein kinase. Am J Physiol Cell Physiol 299:C1485–C1492.
  • Duan J-X, Zhou Y, Zhou A-Y, et al. (2017). Calcitonin gene-related peptide exerts anti-inflammatory property through regulating murine macrophages polarization in vitro. Mol Immunol 91: 105–13.
  • Pinho-Ribeiro FA, Baddal B, Haarsma R, et al. (2018). Blocking neuronal signaling to immune cells treats streptococcal invasive infection. Cell 173:1083–97.e22.
  • Assas BM, Wakid MH, Zakai HA, et al. (2016). Transient receptor potential vanilloid 1 expression and function in splenic dendritic cells: a potential role in immune homeostasis. Immunology 147:292–304.
  • McGillis JP, Humphreys S, Rangnekar V, et al. (1993). Modulation of B lymphocyte differentiation by calcitonin gene-related peptide (CGRP). Cell Immunol 150:391–404.
  • Xing L, Guo J, Wang X. (2000). Induction and expression of β-calcitonin gene-related peptide in rat T lymphocytes and its significance. J Immunol 165:4359–66.
  • Umeda Y, Arisawa M. (1989). Inhibition of natural killer activity by calcitonin gene-related peptide. Immunopharmacol Immunotoxicol 11:309–20.
  • Li W-j, Wang T-k, Wang X. (2006). Calcitonin gene-related peptide inhibits interleukin-1β-induced interleukin-8 secretion in human type II alveolar epithelial cells. Acta Pharmacol Sin 27:1340–5.
  • Holzmann B. (2013). Antiinflammatory activities of CGRP modulating innate immune responses in health and disease. Curr Protein Pept Sci 14:268–74.
  • Holzmann B. (2013). Modulation of immune responses by the neuropeptide CGRP. Amino Acids 45:1–7.
  • Li C-L, Qin F, Li R-r, et al. (2019). Preparation and in vivo expression of CS-PEI/pCGRP complex for promoting fracture healing. Inter J Polymer Sci 2019:9432194.
  • Schneider L, Hartwig W, Flemming T, et al. (2009). Protective effects and anti-inflammatory pathways of exogenous calcitonin gene-related peptide in severe necrotizing pancreatitis. Pancreatology 9:662–9.
  • Kroeger I, Erhardt A, Abt D, et al. (2009). The neuropeptide calcitonin gene-related peptide (CGRP) prevents inflammatory liver injury in mice. J Hepatol 51:342–53.
  • Kraenzlin ME, Ch'ng JLC, Mulderry PK, et al. (1985). Infusion of a novel peptide, calcitonin gene-related peptide (CGRP) in man. Pharmacokinetics and effects on gastric acid secretion and on gastrointestinal hormones. Regul Pept 10:189–97.
  • Aubdool Aisah A, Thakore P, Argunhan F, et al. (2017). A novel α-calcitonin gene-related peptide analogue protects against end-organ damage in experimental hypertension, cardiac hypertrophy, and heart failure. Circulation 136:367–83.
  • Danser AHJ, MaassenVanDenBrink A. (2017). Calcitonin gene-related peptide receptor agonism: a double-edged sword? Circulation 136:384–7.
  • Tian XH, Wang ZG, Meng H, et al. (2013). Tat peptide-decorated gelatin-siloxane nanoparticles for delivery of CGRP transgene in treatment of cerebral vasospasm. Int J Nanomedicine 8: 865–76.
  • Danhier F, Ansorena E, Silva JM, et al. (2012). PLGA-based nanoparticles: An overview of biomedical applications. J Control Release 161:505–22.
  • Mir M, Ahmed N, Rehman A. u. (2017). Recent applications of PLGA based nanostructures in drug delivery. Colloids Surf B Biointerfaces 159: 217–31.
  • Swider E, Koshkina O, Tel J, et al. (2018). Customizing poly(lactic-co-glycolic acid) particles for biomedical applications. Acta Biomater 73: 38–51.
  • Gao X, Li L, Cai X, et al. (2021). Targeting nanoparticles for diagnosis and therapy of bone tumors: Opportunities and challenges. Biomaterials 265: 120404.
  • Pasut G, Veronese FM. (2012). State of the art in PEGylation: the great versatility achieved after forty years of research. J Control Release 161:461–72.
  • Suk JS, Xu Q, Kim N, et al. (2016). PEGylation as a strategy for improving nanoparticle-based drug and gene delivery. Adv Drug Deliv Rev 99: 28–51.
  • Huckaby JT, Lai SK. (2018). PEGylation for enhancing nanoparticle diffusion in mucus. Adv Drug Deliv Rev 124: 125–39.
  • Zhang L, Hoff AO, Wimalawansa SJ, et al. (2001). Arthritic calcitonin/α calcitonin gene-related peptide knockout mice have reduced nociceptive hypersensitivity. Pain 89:265–73.
  • Mora-Huertas CE, Fessi H, Elaissari A. (2010). Polymer-based nanocapsules for drug delivery. Int J Pharm 385:113–42.
  • Bilati U, Allémann E, Doelker E. (2005). Development of a nanoprecipitation method intended for the entrapment of hydrophilic drugs into nanoparticles. Eur J Pharm Sci 24:67–75.
  • Derman S, Mustafaeva ZA, Abamor ES, et al. (2015). Preparation, characterization and immunological evaluation: canine parvovirus synthetic peptide loaded PLGA nanoparticles. J Biomed Sci 22:89.
  • Rietscher R, Czaplewska JA, Majdanski TC, et al. (2016). Impact of PEG and PEG-b-PAGE modified PLGA on nanoparticle formation, protein loading and release. Int J Pharm 500:187–95.
  • Park MH, Jun HS, Jeon JW, et al. (2018). Preparation and characterization of bee venom-loaded PLGA particles for sustained release. Pharm Dev Technol 23:857–64.
  • Pridgen EM, Alexis F, Kuo TT, et al. (2013). Transepithelial Transport of Fc-Targeted Nanoparticles by the Neonatal Fc Receptor for Oral Delivery. Sci Transl Med 5:213ra167.
  • Joshi AS, Thakur AK. (2014). Biodegradable delivery system containing a peptide inhibitor of polyglutamine aggregation: a step toward therapeutic development in Huntington's disease. J Pept Sci 20:630–9.
  • Kaur S, Bhararia A, Sharma K, et al. (2016). Thyrotropin-releasing hormone loaded and chitosan engineered polymeric nanoparticles: towards effective delivery of neuropeptides. J Nanosci Nanotechnol 16:5324–32.
  • Ma W, Chen M, Kaushal S, et al. (2012). PLGA nanoparticle-mediated delivery of tumor antigenic peptides elicits effective immune responses. Int J Nanomedicine 7: 1475–87.
  • Keum CG, Noh YW, Baek JS, et al. (2011). Practical preparation procedures for docetaxel-loaded nanoparticles using polylactic acid-co-glycolic acid. Int J Nanomedicine 6: 2225–34.
  • Scholes PD, Coombes AGA, Illum L, et al. (1999). Detection and determination of surface levels of poloxamer and PVA surfactant on biodegradable nanospheres using SSIMS and XPS. J Control Release 59:261–278.
  • Zhang H, Cui W, Bei J, et al. (2006). Preparation of poly(lactide-co-glycolide-co-caprolactone) nanoparticles and their degradation behaviour in aqueous solution. Polym Degrad Stab 91:1929–1936.
  • Astete CE, Sabliov CM. (2006). Synthesis and characterization of PLGA nanoparticles. Journal of Biomaterials Science, Polymer Edition 17:247–289.
  • Marshall IAN. (1992). Mechanism of vascular relaxation by the calcitonin gene-related peptidea. Ann NY Acad Sci 657:204–215.
  • McCormack DG, Mak JC, Coupe MO, et al. (1989). Calcitonin gene-related peptide vasodilation of human pulmonary vessels. J Appl Physiol (1985) 67:1265–1270.
  • McCormack DG, Salonen RO, Barnes PJ. (1989). Effect of sensory neuropeptides on canine bronchial and pulmonary vessels in vitro. Life Sci 45:2405–2412.
  • Sandor M, Harris J, Mathiowitz E. (2002). A novel polyethylene depot device for the study of PLGA and P(FASA) microspheres in vitro and in vivo. Biomaterials 23:4413–4423.
  • Zolnik BS, Burgess DJ. (2008). Evaluation of in vivo–in vitro release of dexamethasone from PLGA microspheres. J Control Release 127:137–145.
  • Ferrara N, Davis-Smyth T. (1997). The biology of vascular endothelial growth factor. Endocr Rev 18:4–25.
  • Leung DW, Cachianes G, Kuang WJ, et al. (1989). Vascular endothelial growth factor is a secreted angiogenic mitogen. Science 246:1306–1309.
  • Lahm T, Crisostomo PR, Markel TA, et al. (2007). The critical role of vascular endothelial growth factor in pulmonary vascular remodeling after lung injury. Shock 28:4–14.
  • Voelkel NF, Vandivier RW, Tuder RM. (2006). Vascular endothelial growth factor in the lung. Am J Physiol Lung Cell Mol Physiol 290:L209–L221.
  • Brain SD, Grant AD. (2004). Vascular actions of calcitonin gene-related peptide and adrenomedullin. Physiol Rev 84:903–934.
  • Guo Y, Zhang Q, Chen H, et al. (2019). The protective role of calcitonin gene-related peptide (CGRP) in high-glucose-induced oxidative injury in rat aorta endothelial cells. Peptides 121:170121.