2,004
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Precise engineering of hybrid molecules-loaded macromolecular nanoparticles shows in vitro and in vivo antitumor efficacy toward the treatment of nasopharyngeal cancer cells

, , &
Pages 776-786 | Received 03 Feb 2021, Accepted 08 Mar 2021, Published online: 19 Apr 2021

References

  • Agrawal M, Saraf S, Saraf S, et al. (2018). Nose-to-brain drug delivery: an update on clinical challenges and progress towards approval of anti-Alzheimer drugs. J Control Release 281:139–77.
  • Balaji S, Mohamed Subarkhan MK, Ramesh R, et al. (2020). Synthesis and structure of arene Ru(II) N∧O-chelating complexes: in vitro cytotoxicity and cancer cell death mechanism. Organometallics 39:1366–75.
  • Chung CYS, Fung SK, Tong KC, et al. (2017). A multi-functional PEGylated gold(iii) compound: potent anti-cancer properties and self-assembly into nanostructures for drug co-delivery. Chem Sci 8:1942–53.
  • Delplace V, Couvreur P, Nicolas J. (2014). Recent trends in the design of anticancer polymer prodrug nanocarriers. Polym Chem 5:1529–44.
  • Ding S, Khan AI, Cai X, et al. (2020). Overcoming blood–brain barrier transport: advances in nanoparticle-based drug delivery strategies. Mater Today. 37:112–25.
  • Emiliano YSS, Almeida-Amaral EE. (2018). Efficacy of apigenin and miltefosine combination therapy against experimental cutaneous leishmaniasis. J Nat Prod 81:1910–3.
  • Fazio N. (2020). Cisplatin plus gemcitabine as standard of care for germline BRCA/PALB2-mutated pancreatic adenocarcinoma: are we moving too fast? JCO 38:2466–7.
  • Follmann HDM, Oliveira ON, Lazarin-Bidóia D, et al. (2018). Multifunctional hybrid aerogels: hyperbranched polymer-trapped mesoporous silica nanoparticles for sustained and prolonged drug release. Nanoscale 10:1704–15.
  • Fu B, Yang Q, Yang F. (2020). Flexible underwater oleophobic cellulose aerogels for efficient oil/water separation. ACS Omega 5:8181–7.
  • Gadde S. (2015). Multi-drug delivery nanocarriers for combination therapy. Med Chem Commun 6:1916–29.
  • Gupta RK, Dunderdale GJ, England MW, Hozumi A. (2017). Oil/water separation techniques: a review of recent progresses and future directions. J Mater Chem A 5:16025–58.
  • Han W, Shi L, Ren L, et al. (2018). A nanomedicine approach enables co-delivery of cyclosporin A and gefitinib to potentiate the therapeutic efficacy in drug-resistant lung cancer. Signal Transduct Target Ther 3:1–10.
  • Hong Y, Liu N, Zhou R, et al. (2020). Combination therapy using kartogenin-based chondrogenesis and complex polymer scaffold for cartilage defect regeneration. ACS Biomater Sci Eng 6:6276–84.
  • Hu J, Qian Y, Wang X, et al. (2012). Drug-loaded and superparamagnetic iron oxide nanoparticle surface-embedded amphiphilic block copolymer micelles for integrated chemotherapeutic drug delivery and MR imaging. Langmuir 28:2073–82.
  • Huang P, Ao J, Zhou L, et al. (2016). Facile approach to construct ternary cocktail nanoparticles for cancer combination therapy. Bioconjug Chem 27:1564–8.
  • Huang Y, He Y, Huang Z, et al. (2017). Coordination self-assembly of platinum-bisphosphonate polymer-metal complex nanoparticles for cisplatin delivery and effective cancer therapy. Nanoscale 9:10002–19.
  • Huxford-Phillips RC, Russell SR, Liu D, Lin W. (2013). Lipid-coated nanoscale coordination polymers for targeted cisplatin delivery. RSC Adv 3:14438–43.
  • Jiang Z, Pflug K, Usama SM, et al. (2019). Cyanine-gemcitabine conjugates as targeted theranostic agents for glioblastoma tumor cells. J Med Chem 62:9236–45.
  • Johnson K, Muzzin N, Toufanian S, et al. (2020). Drug-impregnated, pressurized gas expanded liquid-processed alginate hydrogel scaffolds for accelerated burn wound healing. Acta Biomater 112:101–11.
  • Ketabat F, Pundir M, Mohabatpour F, et al. (2019). Controlled drug delivery systems for oral cancer treatment-current status and future perspectives. Pharmaceutics 11:302.
  • Kim C-K, Lim S-J. (2002). Recent progress in drug delivery systems for anticancer agents. Arch Pharm Res 25:229–39.
  • Konstantinopoulos PA, Cheng S-C, Wahner Hendrickson AE, et al. (2020). Berzosertib plus gemcitabine versus gemcitabine alone in platinum-resistant high-grade serous ovarian cancer: a multicentre, open-label, randomised, phase 2 trial. Lancet Oncol 21:957–68.
  • Laroui N, Coste M, Lichon L, et al. (2019). Combination of photodynamic therapy and gene silencing achieved through the hierarchical self-assembly of porphyrin-siRNA complexes. Int J Pharm 569:118585.
  • Li D, Finley SD. (2018). The impact of tumor receptor heterogeneity on the response to anti-angiogenic cancer treatment. Integr Biol (Camb) 10:253–69.
  • Li X, Gao Y. (2020). Synergistically fabricated polymeric nanoparticles featuring dual drug delivery system to enhance the nursing care of cervical cancer. Process Biochem 98:254–61.
  • Lin R, Yu W, Chen X, Gao H. (2021). Self-propelled micro/nanomotors for tumor targeting delivery and therapy. Adv Healthcare Mater 10:2001212.
  • Liu R, Hu C, Yang Y, et al. (2019). Theranostic nanoparticles with tumor-specific enzyme-triggered size reduction and drug release to perform photothermal therapy for breast cancer treatment. Acta Pharm Sin B 9:410–20.
  • Llinàs MC, Martínez-Edo G, Cascante A, et al. (2018). Preparation of a mesoporous silica-based nano-vehicle for dual DOX/CPT ph-triggered delivery. Drug Deliv 25:1137–46.
  • Margiotta N, Savino S, Denora N, et al. (2016). Encapsulation of lipophilic kiteplatin Pt(IV) prodrugs in PLGA-PEG micelles. Dalton Trans 45:13070–81.
  • Mohamed Subarkhan MK, Ramesh R, Liu Y. (2016). Synthesis and molecular structure of arene ruthenium(ii) benzhydrazone complexes: impact of substitution at the chelating ligand and arene moiety on antiproliferative activity. New J Chem 40:9813–23.
  • Mohamed Subarkhan MK, Ren L, Xie B, et al. (2019). Novel tetranuclear ruthenium(II) arene complexes showing potent cytotoxic and antimetastatic activity as well as low toxicity in vivo. Eur J Med Chem 179:246–56.
  • Mohan N, Mohamed Subarkhan MK, Ramesh R. (2018). Synthesis, antiproliferative activity and apoptosis-promoting effects of arene ruthenium(II) complexes with N, O chelating ligands. J Organomet Chem 859:124–31.
  • Nejabat M, Eisvand F, Soltani F, et al. (2020). Combination therapy using Smac peptide and doxorubicin-encapsulated MUC 1-targeted polymeric nanoparticles to sensitize cancer cells to chemotherapy: an in vitro and in vivo study. Int J Pharm 587:119650.
  • Ruan S, Xie R, Qin L, et al. (2019). Aggregable nanoparticles-enabled chemotherapy and autophagy inhibition combined with anti-PD-L1 antibody for improved glioma treatment. Nano Lett 19:8318–32.
  • Sandblom V, Spetz J, Shubbar E, et al. (2019). Gemcitabine potentiates the anti-tumour effect of radiation on medullary thyroid cancer. PLoS One 14:e0225260.
  • Sani IK, Pirsa S, Tağı Ş. (2019). Preparation of chitosan/zinc oxide/Melissa officinalis essential oil nano-composite film and evaluation of physical, mechanical and antimicrobial properties by response surface method. Polym Test 79:106004.
  • Sathiya Kamatchi T, Mohamed Subarkhan MK, Ramesh R, et al. (2020). Investigation into antiproliferative activity and apoptosis mechanism of new arene Ru(ii) carbazole-based hydrazone complexes. Dalton Trans 49:11385–95.
  • Sharifi M, Jafari S, Hasan A, et al. (2020). Antimetastatic activity of lactoferrin-coated mesoporous maghemite nanoparticles in breast cancer enabled by combination therapy. ACS Biomater Sci Eng 6:3574–84.
  • Shen J, He Q, Gao Y, et al. (2011). Mesoporous silica nanoparticles loading doxorubicin reverse multidrug resistance: performance and mechanism. Nanoscale 3:4314–22.
  • Singhai NJ, Ramteke S. (2020). CNTs mediated CD44 targeting; a paradigm shift in drug delivery for breast cancer. Genes Dis 7:205–16.
  • Subarkhan MKM, Ramesh R. (2016). Ruthenium(ii) arene complexes containing benzhydrazone ligands: synthesis, structure and antiproliferative activity. Inorg Chem Front 3:1245–55.
  • Sulthana S, Banerjee T, Kallu J, et al. (2017). Combination therapy of NSCLC using Hsp90 inhibitor and doxorubicin carrying functional nanoceria. Mol Pharm 14:875–84.
  • Tabatabaei Rezaei SJ, Amani V, Nabid MR, et al. (2015). Folate-decorated polymeric Pt(ii) prodrug micelles for targeted intracellular delivery and cytosolic glutathione-triggered release of platinum anticancer drugs. Polym Chem 6:2844–53.
  • Tambe P, Kumar P, Paknikar KM, Gajbhiye V. (2018). Decapeptide functionalized targeted mesoporous silica nanoparticles with doxorubicin exhibit enhanced apoptotic effect in breast and prostate cancer cells. IJN 13:7669–80.
  • Thompson BR, Shi J, Zhu H-J, Smith DE. (2020). Pharmacokinetics of gemcitabine and its amino acid ester prodrug following intravenous and oral administrations in mice. Biochem Pharmacol 180:114127.
  • Tsakiris N, Papavasileiou M, Bozzato E, et al. (2019). Combinational drug-loaded lipid nanocapsules for the treatment of cancer. Int J Pharm 569:118588.
  • Unnam S, Panduragaiah VM, Sidramappa MA, Muddana Eswara BR. (2019). Gemcitabine-loaded folic acid tagged liposomes: improved pharmacokinetic and biodistribution profile. Curr Drug Deliv 16:111–22.
  • Wang F, Porter M, Konstantopoulos A, et al. (2017). Preclinical development of drug delivery systems for paclitaxel-based cancer chemotherapy. J Control Release 267:100–18.
  • Wang J, Xu D, Deng T, et al. (2018). Self-decomposable mesoporous doxorubicin@silica nanocomposites for nuclear targeted chemo-photodynamic combination therapy. ACS Appl Nano Mater 1:1976–84.
  • Wang T, Wang L, Li X, et al. (2017). Size-dependent regulation of intracellular trafficking of polystyrene nanoparticle-based drug-delivery systems. ACS Appl Mater Interf 9:18619–25.
  • Wu C-E, Chou W-C, Hsieh C-H, et al. (2020). Prognostic and predictive factors for Taiwanese patients with advanced biliary tract cancer undergoing frontline chemotherapy with gemcitabine and cisplatin: a real-world experience. BMC Cancer 20:422.
  • Wu S, Qiao Z, Li Y, et al. (2020). Persistent luminescence nanoplatform with fenton-like catalytic activity for tumor multimodal imaging and photoenhanced combination therapy. ACS Appl Mater Interf 12:25572–80.
  • Xiao Y, An F-F, Chen J, et al. (2018). The impact of light irradiation timing on the efficacy of nanoformula-based photo/chemo combination therapy. J Mater Chem B 6:3692–702.
  • Yalcin TE, Ilbasmis-Tamer S, Takka S. (2020). Antitumor activity of gemcitabine hydrochloride loaded lipid polymer hybrid nanoparticles (LPHNs): in vitro and in vivo. Int J Pharm 580:119246.
  • Yang X, Hu C, Tong F, et al. (2019). Tumor microenvironment-responsive dual drug dimer-loaded PEGylated bilirubin nanoparticles for improved drug delivery and enhanced immune-chemotherapy of breast cancer. Adv Funct Mater 29:1901896.
  • Yao N, Chen Q, Shi W, et al. (2019). PARP14 promotes the proliferation and gemcitabine chemoresistance of pancreatic cancer cells through activation of NF-κB pathway. Mol Carcinog 58:1291–302.
  • Yu L, Xu M, Xu W, et al. (2020). Enhanced cancer-targeted drug delivery using precoated nanoparticles. Nano Lett 20:8903–11.
  • Zhang W, Tung C-H. (2017). Cisplatin cross-linked multifunctional nanodrugplexes for combination therapy. ACS Appl Mater Interf 9:8547–55.
  • Zhang Y, Kim WY, Huang L. (2013). Systemic delivery of gemcitabine triphosphate via LCP nanoparticles for NSCLC and pancreatic cancer therapy. Biomaterials 34:3447–58.
  • Zhou J, Pishko MV, Lutkenhaus JL. (2014). Thermoresponsive layer-by-layer assemblies for nanoparticle-based drug delivery. Langmuir 30:5903–10.
  • Zhou K, Zhu Y, Chen X, et al. (2020). Redox- and MMP-2-sensitive drug delivery nanoparticles based on gelatin and albumin for tumor targeted delivery of paclitaxel. Mater Sci Eng C Mater Biol Appl 114:111006.