3,855
Views
32
CrossRef citations to date
0
Altmetric
Research Article

Layer-by-Layer assembled nano-drug delivery systems for cancer treatment

, & ORCID Icon
Pages 655-669 | Received 27 Jan 2021, Accepted 15 Mar 2021, Published online: 31 Mar 2021

References

  • Salahpour-Anarjan F, Nezhad-Mokhtari P, Akbarzadeh A. Smart Drug Delivery Systems[M]//Modeling and Control of Drug Delivery Systems. Academic Press, 2021: 29-44. 
  • Ai H. (2011). Layer-by-layer capsules for magnetic resonance imaging and drug delivery. Adv Drug Deliv Rev 63:772–88.
  • An Q, Huang T, Shi F. (2018). Covalent layer-by-layer films: chemistry, design, and multidisciplinary applications. Chem Soc Rev 47:5061–98.
  • Antipov AA, Sukhorukov GB, Möhwald H. (2003). Influence of the Ionic Strength on the Polyelectrolyte Multilayers' Permeability. Langmuir 19:2444–2448.
  • Antipov AA, Sukhorukov GB. (2004). Polyelectrolyte multilayer capsules as vehicles with tunable permeability. Adv Colloid Interface Sci 111:49–61.
  • Ariga K, Yamauchi Y, Rydzek G, et al. (2014). Layer-by-layer nanoarchitectonics: invention, innovation, and evolution. Chem Lett 43:36–68.
  • Bazak R, Houri M, El Achy S, et al. (2014). Passive targeting of nanoparticles to cancer: A comprehensive review of the literature. Mol Clin Oncol 2:904–908.
  • Belda Marín C, Fitzpatrick V, Kaplan DL, et al. (2020). Silk polymers and nanoparticles: a powerful combination for the design of versatile biomaterials. Front Chem 8:604398.,
  • Bergbreiter DE, Liao K-S. (2009). Covalent layer-by-layer assembly—an effective, forgiving way to construct functional robust ultrathin films and nanocomposites. Soft Matter 5:23–8.
  • Bishop CJ, Liu AL, Lee DS, et al. (2016). Layer-by-layer inorganic/polymeric nanoparticles for kinetically controlled multigene delivery . J Biomed Mater Res A 104:707–13.
  • Bishop CJ, Tzeng SY, Green JJ. (2015). Degradable polymer-coated gold nanoparticles for co-delivery of DNA and siRNA. Acta Biomater 11:393–403.
  • Brandt JV, Piazza RD, dos Santos CC, et al. (2021). Synthesis of core@shell nanoparticles functionalized with folic acid-modified PCL-co-PEGMA copolymer for methotrexate delivery. Nano-Structures & Nano-Objects 25:100675.,
  • Bray F, Ferlay J, Soerjomataram I, et al. (2018). Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 68:394–424.
  • Bruneau M, Bennici S, Brendle J, et al. (2019). Systems for stimuli-controlled release: Materials and applications. J Control Release 294:355–371.
  • Cao J, Chen Z, Chi J, et al. (2018). Recent progress in synergistic chemotherapy and phototherapy by targeted drug delivery systems for cancer treatment. Artif Cells Nanomed Biotechnol 46:817–30.
  • Caruso F, Caruso RA, Möhwald H. (1998). Nanoengineering of inorganic and hybrid hollow spheres by colloidal templating. Science 282:1111–4.
  • Chen W-H, Luo G-F, Qiu W-X, et al. (2017). Mesoporous silica-based versatile theranostic nanoplatform constructed by layer-by-layer assembly for excellent photodynamic/chemo therapy. Biomaterials 117:54–65.
  • Cheng L, Yang K, Chen Q, Liu Z. (2012). Organic stealth nanoparticles for highly effective in vivo near-infrared photothermal therapy of cancer. ACS Nano 6:5605–5613.
  • Cheng W, Nie J, Gao N, et al. (2017). A Multifunctional nanoplatform against multidrug resistant cancer: merging the best of targeted chemo/gene/photothermal therapy. Adv Funct Mater 27:1704135.
  • Cheng W, Nie J, Xu L, et al. (2017). pH-Sensitive Delivery Vehicle Based on Folic Acid-Conjugated Polydopamine-Modified Mesoporous Silica Nanoparticles for Targeted Cancer Therapy. ACS Appl Mater Interfaces 9:18462–18473.,
  • Cheng W, Zeng X, Chen H, et al. (2019). Versatile polydopamine platforms: synthesis and promising applications for surface modification and advanced nanomedicine. ACS Nano 13:8537–65.,
  • Chi J, Ma Q, Shen Z, et al. (2020). Targeted nanocarriers based on iodinated-cyanine dyes as immunomodulators for synergistic phototherapy. Nanoscale 12:11008–11025.
  • Correa S, Choi KY, Dreaden EC, et al. (2016). Highly Scalable, Closed-Loop Synthesis of Drug-Loaded, Layer-by-Layer Nanoparticles. Adv Funct Mater 26:991–1003.
  • Corroyer-Dulmont A, Valable S, Falzone N, et al. (2020). VCAM-1 targeted alpha-particle therapy for early brain metastases. Neuro-oncology 22:357–368.
  • Cui W, Li J, Decher G. (2016). Self-Assembled Smart Nanocarriers for Targeted Drug Delivery . Adv Mater 28:1302–11.
  • Dag A, Omurtag Ozgen PS, Atasoy S. (2019). Glyconanoparticles for targeted tumor therapy of platinum anticancer drug. Biomacromolecules 20:2962–72.
  • Dang Y, Guan J. (2020). Nanoparticle-based drug delivery systems for cancer therapy. Smart Materials in Medicine 1:10–9.
  • Decher G, Lehr B, Lowack K, et al. (1994). New nanocomposite films for biosensors: layer-by-layer adsorbed films of polyelectrolytes, proteins or DNA. Biosens Bioelectron 9:677–84.
  • Decher G. (1997). Fuzzy nanoassemblies: toward layered polymeric multicomposites. science 277:1232–7.
  • Deng ZJ, Morton SW, Ben-Akiva E, et al. (2013). Layer-by-layer nanoparticles for systemic codelivery of an anticancer drug and siRNA for potential triple-negative breast cancer treatment. Acs Nano 7:9571–84.
  • Díez-Pascual AM, Shuttleworth PS. (2014). Layer-by-layer assembly of biopolyelectrolytes onto thermo/pH-responsive micro/nano-gels. Materials (Basel) 7:7472–7512.
  • Donath E, Sukhorukov GB, Caruso F, et al. (1998). Novel hollow polymer shells by colloid‐templated assembly of polyelectrolytes. Angew Chem Int Ed 37:2201–5.
  • Dreaden EC, Morton SW, Shopsowitz KE, et al. (2014). Bimodal tumor-targeting from microenvironment responsive hyaluronan layer-by-layer (LbL) nanoparticles. ACS Nano 8:8374–8382.
  • Du P, Zhao X, Zeng J, et al. (2015). Layer-by-layer engineering fluorescent polyelectrolyte coated mesoporous silica nanoparticles as pH-sensitive nanocarriers for controlled release. Appl Surf Sci 345:90–98.
  • Duan G, Haase MF, Stebe KJ, Lee D. (2018). One-Step Generation of Salt-Responsive Polyelectrolyte Microcapsules via Surfactant-Organized Nanoscale Interfacial Complexation in Emulsions (SO NICE). Langmuir 34:847–53.
  • Elias E, Thomas S, George A, Sebastian M. (2010). First World Conference on nanomedicine and drug delivery. Ther Deliv 1:225–30.
  • Etienne O, Picart C, Taddei C, et al. (2006). Polyelectrolyte multilayer film coating and stability at the surfaces of oral prosthesis base polymers: an in vitro and in vivo study. J Dent Res 85:44–8.
  • Fan F, Wang L, Li F, et al. (2016). Stimuli-responsive layer-by-layer tellurium-containing polymer films for the combination of chemotherapy and photodynamic therapy. ACS Appl Mater Interfaces 8:17004–17010.
  • Freund, M. S., Deore, B. A. & Yu, I. Tunable conducting polymer nanostructures. US patent (2012).
  • Gao L, Cui Y, He Q, et al. (2011). Selective recognition of co-assembled thrombin aptamer and docetaxel on mesoporous silica nanoparticles against tumor cell proliferation . Chemistry 17:13170–13174.
  • Gautam M, Thapa RK, Gupta B, et al. (2020). Phytosterol-loaded CD44 receptor-targeted PEGylated nano-hybrid phyto-liposomes for synergistic chemotherapy. Expert Opin Drug Deliv 17:423–434.
  • Gentile P, Carmagnola I, Nardo T, Chiono V. (2015). Layer-by-layer assembly for biomedical applications in the last decade. Nanotechnology 26:422001.
  • Gharbavi M, Johari B, Eslami SS, et al. (2020a). Cholesterol-conjugated bovine serum albumin nanoparticles as a tamoxifen tumor-targeted delivery system . Cell Biol Int 44:2485–98.
  • Gharbavi M, Johari B, Mousazadeh N, et al. (2020b). Hybrid of niosomes and bio-synthesized selenium nanoparticles as a novel approach in drug delivery for cancer treatment. Mol Biol Rep 47:6517–29.
  • Gidwani B, Vyas A. (2015). The potentials of nanotechnology-based drug delivery system for treatment of ovarian cancer. Artif Cells Nanomed Biotechnol 43:291–7.
  • Gopi S, Amalraj A. (2016). Effective drug delivery system of biopolymers based on nanomaterials and hydrogels - a review. Drug Des 5:2.
  • Guo D, Xiao Y, Li T, et al. (2020). Fabrication of high-performance composite nanofiltration membranes for dye wastewater treatment: mussel-inspired layer-by-layer self-assembly. J Colloid Interface Sci 560:273–83.
  • Hamdallah SI, Zoqlam R, Erfle P, et al. (2020). Microfluidics for pharmaceutical nanoparticle fabrication: The truth and the myth. Int J Pharm 584:119408.
  • Han U, Seo Y, Hong J. (2016). Effect of pH on the structure and drug release profiles of layer-by-layer assembled films containing polyelectrolyte, micelles, and graphene oxide. Sci Rep 6:24158–10.
  • Han Y, Tong W, Zhang Y, Gao C. (2012). Fabrication of chitosan single-component microcapsules with a micrometer-thick and layered wall structure by stepwise core-mediated precipitation. Macromol Rapid Commun 33:326–331.
  • Hashemi M, Omidi M, Muralidharan B, et al. (2018). Layer-by-layer assembly of graphene oxide on thermosensitive liposomes for photo-chemotherapy. Acta Biomater 65:376–392.,
  • Hirsjarvi S, Passirani C, Benoit J-P. (2011). Passive and active tumour targeting with nanocarriers. Curr Drug Discov Technol 8:188–196.
  • Hou X, Wu L, Sun L, et al. (2002). Covalent attachment of deoxyribonucleic acid (DNA) to diazo-resin (DAR) in self-assembled multilayer films. Polym Bull 47:445–50.,
  • Hu K, Cui F, Lv Q, et al. (2008). Preparation of fibroin/recombinant human‐like collagen scaffold to promote fibroblasts compatibility. J Biomed Mater Res 84A:483–90.
  • Hu Y, Cai K, Luo Z, Jandt KD. (2010). Layer-by-layer assembly of β-estradiol loaded mesoporous silica nanoparticles on titanium substrates and its implication for bone homeostasis. Adv Mater 22:4146–4150.
  • Hua A, Jones SA, Villiers MMD, Lvov YM. (2003). Nano-encapsulation of furosemide microcrystals for controlled drug release. J Control Release 86:59–68.
  • Huang F, Liao W-C, Sohn YS, et al. (2016). Light-responsive and pH-responsive DNA microcapsules for controlled release of loads. J Am Chem Soc 138:8936–8945.
  • Huo M, Yuan J, Tao L, Wei Y. (2014). Redox-responsive polymers for drug delivery: from molecular design to applications. Polym Chem 5:1519–1528.
  • Hwangbo S, Jeong H, Heo J, et al. (2016). Antibacterial nanofilm coatings based on organosilicate and nanoparticles. React Funct Polym 102:27–32.
  • Iler RK. (1966). Multilayers of colloidal particles. J Colloid Interface Sci 21:569–94.
  • Jia Y, Fei J, Cui Y, et al. (2011). pH-responsive polysaccharide microcapsules through covalent bonding assembly. Chem Commun (Camb) 47:1175–7.
  • Jiang X, Malkovskiy AV, Tian W, et al. (2014). Promotion of airway anastomotic microvascular regeneration and alleviation of airway ischemia by deferoxamine nanoparticles. Biomaterials 35:803–13.
  • Joseph B, George A, Gopi S, et al. (2017). Polymer sutures for simultaneous wound healing and drug delivery - A review. Int J Pharm 524:454–66.
  • Joshy KS, et al. (2016). Evaluation of in-vitro cytotoxicity and cellular uptake efficiency of zidovudine-loaded solid lipid nanoparticles modified with Aloe Vera in glioma cells. Mater Sci Eng C. 66:40–50.
  • Joshy KS, George A, Snigdha S, et al. (2018). Novel core-shell dextran hybrid nanosystem for anti-viral drug delivery. Mater Sci Eng C Mater Biol Appl 93:864–72.
  • Joshy KS, Snigdha S, George A, et al. (2017). Core–shell nanoparticles of carboxy methyl cellulose and compritol-PEG for antiretroviral drug delivery. Cellulose 24:4759–71.
  • Kang H, Rho S, Stiles WR, et al. (2020). Size‐dependent EPR effect of polymeric nanoparticles on tumor targeting. Adv Healthcare Mater 9:1901223.
  • Kim B-S, Park SW, Hammond PT. (2008). Hydrogen-bonding layer-by-layer-assembled biodegradable polymeric micelles as drug delivery vehicles from surfaces. ACS Nano 2:386–92.
  • Kim M, Yeo SJ, Highley CB, et al. (2015). One-step generation of multifunctional polyelectrolyte microcapsules via nanoscale interfacial complexation in emulsion (NICE). ACS Nano 9:8269–78.
  • Li C, Wang J, Lu X, et al. (2020). Hydrogen peroxide-response nanoprobe for CD44-targeted circulating tumor cell detection and H2O2 analysis. Biomaterials 255:120071.
  • Li F, Zhao X, Wang H, et al. (2015). Multiple layer‐by‐layer lipid‐polymer hybrid nanoparticles for improved FOLFIRINOX chemotherapy in pancreatic tumor models. Adv Funct Mater 25:788–798.
  • Li J, Wang Y, Zhu Y, Oupický D. (2013). Recent advances in delivery of drug-nucleic acid combinations for cancer treatment. J Control Release 172:589–600.
  • Li Y, Hong W, Zhang H, et al. (2020). Photothermally triggered cytosolic drug delivery of glucose functionalized polydopamine nanoparticles in response to tumor microenvironment for the GLUT1-targeting chemo-phototherapy. J Control Release 317:232–45.
  • Li Z, Shan X, Chen Z, et al. (2020). Applications of surface modification technologies in nanomedicine for deep tumor penetration. Adv Sci 8:2002589.
  • Li Z, Yuan D, Jin G, et al. (2016). Facile layer-by-layer self-assembly toward enantiomeric Poly(lactide) Stereocomplex Coated Magnetite Nanocarrier for Highly Tunable Drug Deliveries. ACS Appl Mater Interfaces 8:1842–1853.
  • Liang Z, Dzienis KL, Xu J, Wang Q. (2006). Covalent layer‐by‐layer assembly of conjugated polymers and CdSe nanoparticles: multilayer structure and photovoltaic properties. Adv Funct Mater 16:542–8.
  • Liu G, Gao N, Zhou Y, et al. (2019). Polydopamine-based "Four-in-One" versatile nanoplatforms for targeted dual chemo and photothermal synergistic cancer therapy. Pharmaceutics 11:507.
  • Liu H, Rusling JF, Hu N. (2004). Electroactive core-shell nanocluster films of heme proteins, polyelectrolytes, and silica nanoparticles. Langmuir 20:10700–5.
  • Liu J, Chen R, Zhu X, et al. (2019). In Situ Synthesis of a Multilayered (PSS-PAH-Pd) n Catalytic Hybrid Film Synthesized by the Layer-by-Layer Self-Assembly. Ind Eng Chem Res 58:9038–47.
  • Liu L, Zhang Y, Song L, et al. (2019). Effect of genipin crosslinked layer-by-layer self-assembled coating on the thermal stability, flammability and wash durability of cotton fabric. Carbohydr Polym 206:396–402.
  • Liu XQ, Picart C. (2016). Layer-by-Layer Assemblies for Cancer Treatment and Diagnosis . Adv Mater 28:1295–301.
  • Liu Y, Liu Y, Feng H, et al. (2012). Layer-by-layer assembly of chemical reduced graphene and carbon nanotubes for sensitive electrochemical immunoassay. Biosens Bioelectron 35:63–68.
  • Lu Z-Z, Wu J, Sun T-M, et al. (2008). Biodegradable polycation and plasmid DNA multilayer film for prolonged gene delivery to mouse osteoblasts. Biomaterials 29:733–41.
  • Lucena GN, Santos CC, Pinto GC, et al. (2020). Surface engineering of magnetic nanoparticles for hyperthermia and drug delivery. Med Devices Sens 3:e10100.
  • Luo R, Neu B, Venkatraman SS. (2012). Surface functionalization of nanoparticles to control cell interactions and drug release. Small 8:2585–94.
  • Lynn DM. (2007). Peeling back the layers: controlled erosion and triggered disassembly of multilayered polyelectrolyte thin films. Adv Mater 19:4118–4130.
  • Lyons LP, Hidalgo Perea S, Weinberg JB, et al. (2019). Meniscus-Derived Matrix Bioscaffolds: Effects of Concentration and Cross-Linking on Meniscus Cellular Responses and Tissue Repair. IJMS 21:44.,
  • Ma Q, Cao J, Gao Y, et al. (2020). Microfluidic-mediated nano-drug delivery systems: from fundamentals to fabrication for advanced therapeutic applications. Nanoscale 12:15512–27.
  • Ma Q, Song Y, Kim JW, et al. (2016). Affinity partitioning-induced self-assembly in aqueous two-phase systems: Templating for polyelectrolyte microcapsules. ACS Macro Lett 5:666–70.
  • Ma Q, Song Y, Sun W, et al. (2020). Cell-inspired all-aqueous microfluidics: from intracellular liquid-liquid phase separation toward advanced biomaterials . Adv Sci (Weinh) 7:1903359.
  • Ma Q, Yuan H, Song Y, et al. (2018). Partitioning-dependent conversion of polyelectrolyte assemblies in an aqueous two-phase system. Soft Matter 14:1552–8.
  • Mattiuzzi C, Lippi G. (2020). Cancer statistics: A comparison between world health organization (WHO) and global burden of disease (GBD). Eur J Public Health 30:1026–7.
  • Meier H. (2005). Conjugated oligomers with terminal donor-acceptor substitution. Angew Chem Int Ed Engl 44:2482–506.
  • Mevlüt B, eref E, Y?Lmaz M. (2012). Solubilizing effect of the p-phosphonate calix[n]arenes towards poorly soluble drug molecules such as nifedipine, niclosamide and furosemide. Journal of Inclusion Phenomena & Macrocyclic Chemistry 74:415–423.
  • Mirzaei HR, Sahebkar A, Salehi R, et al. (2016). Boron neutron capture therapy: Moving toward targeted cancer therapy. J Cancer Res Ther 12:520–5.
  • Mohapatra S, Ranjan S, Dasgupta N, et al. (2018). Characterization and Biology of Nanomaterials for Drug Delivery: Nanoscience and Nanotechnology in Drug Delivery[M]. Cambridge, USA: Elsevier.
  • Mohapatra S, Ranjan S, Dasgupta N, et al. (2018). Nanocarriers for Drug Delivery: Nanoscience and Nanotechnology in Drug Delivery[M]. Cambridge, USA: Elsevier.
  • Paliwal S, Tilak A, Sharma J, et al. (2019). Flurbiprofen-loaded ethanolic liposome particles for biomedical applications. J Microbiol Methods 161:18–27. doi:
  • Pang J, Gao Z, Tan H, et al. (2019). Fabrication, investigation, and application of light-responsive self-assembled nanoparticles. Front Chem 7:620.
  • Park S, Han U, Choi D, Hong J. (2018). Layer-by-layer assembled polymeric thin films as prospective drug delivery carriers: design and applications. Biomater Res 22:29.
  • Peng Y, Nie J, Cheng W, et al. (2018). A multifunctional nanoplatform for cancer chemo-photothermal synergistic therapy and overcoming multidrug resistance. Biomater Sci 6:1084–1098. 10.1039.C1037BM01206C
  • Priya P, Raj RM, Vasanthakumar V, Raj V. (2020). Curcumin-loaded layer-by-layer folic acid and casein coated carboxymethyl cellulose/casein nanogels for treatment of skin cancer. Arabian J Chem 13:694–708.
  • Ramasamy T, Haidar ZS, Tran TH, et al. (2014). Layer-by-layer assembly of liposomal nanoparticles with PEGylated polyelectrolytes enhances systemic delivery of multiple anticancer drugs. Acta Biomater 10:5116–27.
  • Rangel A, Nguyen TN, Egles C, Migonney V. (2021). Different real‐time degradation scenarios of functionalized poly(εヽaprolactone) for biomedical applications. J Appl Polym Sci 138:50479.
  • Ren K, Ji J, Shen J. (2006). Construction and enzymatic degradation of multilayered poly-L-lysine/DNA films. Biomaterials 27:1152–9.
  • Richardson JJ, Cui J, Björnmalm M, et al. (2016). Innovation in layer-by-layer assembly. Chem Rev 116:14828–67.
  • Sabino RM, Kauk K, Madruga LYC, et al. (2020). Enhanced hemocompatibility and antibacterial activity on titania nanotubes with tanfloc/heparin polyelectrolyte multilayers. J Biomed Mater Res 108:992–1005.
  • Sahu A, Choi WI, Tae G. (2018). Recent progress in the design of hypoxia‐specific nano drug delivery systems for cancer therapy. Adv Therap 1:1800026.
  • Salahpouranarjan F. (2019). Active targeting drug delivery nanocarriers: ligands. Nano Struc Nano Objects 19:100370.
  • Schneider GF, Subr V, Ulbrich K, Decher G. (2009). Multifunctional cytotoxic stealth nanoparticles. A model approach with potential for cancer therapy. Nano Lett 9:636–42.
  • Semkina AS, Abakumov MA, Skorikov AS, et al. (2018). Multimodal doxorubicin loaded magnetic nanoparticles for VEGF targeted theranostics of breast cancer. Nanomedicine 14:1733–1742.
  • Sham AYW, Notley SM. (2015). Graphene-polyelectrolyte multilayer film formation driven by hydrogen bonding. J Colloid Interface Sci 456:32–41.
  • Shang-Tse H, Yu-Tang T, Yueh-Hsiung K, et al. (2015). Ferruginol inhibits non-small cell lung cancer growth by inducing caspase-associated apoptosis. Integr Cancer Ther 14:86–97. 年卷期, 页 (2019).
  • Shen Z, Xia J, Ma Q, et al. (2020). Tumor microenvironment-triggered nanosystems as dual-relief tumor hypoxia immunomodulators for enhanced phototherapy. Theranostics 10:9132–9152.
  • Shi X, Sanedrin RJ, Zhou F. (2002). Structural characterization of multilayered DNA and polylysine composite films: influence of ionic strength of DNA solutions on the extent of DNA incorporation. J Phys Chem B 106:1173–80.
  • Shimazaki Y, Mitsuishi M, Ito S, Yamamoto M. (1998). Preparation and characterization of the layer-by-layer deposited ultrathin film based on the charge-transfer interaction in organic solvents. Langmuir 14:2768–73.
  • Singh K, Jha PK, Satapathi S. (2017). Controllable bulk heterojunction morphology by self-assembly of oppositely charged nanoparticles. J Phys Chem C 121:16045–50.
  • Soleymani M, Khalighfard S, Khodayari S, et al. (2020). Effects of multiple injections on the efficacy and cytotoxicity of folate-targeted magnetite nanoparticles as theranostic agents for MRI detection and magnetic hyperthermia therapy of tumor cells. Sci Rep 10:1–14.
  • Song J, Jańczewski D, Guo Y, et al. (2013). Redox responsive nanotubes from organometallic polymers by template assisted layer by layer fabrication. Nanoscale 5:11692–11698.
  • Sukhishvili SA, Granick S. (2002). Layered, erasable polymer multilayers formed by hydrogen-bonded sequential self-assembly. Macromolecules 35:301–10.
  • Sur S, Rathore A, Dave V, et al. (2019). Recent developments in functionalized polymer nanoparticles for efficient drug delivery system. Nano-Structures & Nano-Objects 20:100397. doi:
  • Sydow S, Aniol A, Hadler C, Menzel H. (2019). Chitosan–azide nanoparticle coating as a degradation barrier in multilayered polyelectrolyte drug delivery systems. Biomolecules 9:573.
  • Szczepanowicz K, Bzowska M, Kruk T, et al. (2016). Pegylated polyelectrolyte nanoparticles containing paclitaxel as a promising candidate for drug carriers for passive targeting. Colloids Surf B Biointerfaces 143:463–471.
  • Thierry B, Kujawa P, Tkaczyk C, et al. (2005). Delivery platform for hydrophobic drugs: prodrug approach combined with self-assembled multilayers. J Am Chem Soc 127:1626–7.
  • Thomas J, Thomas S, Kalarikkal N. (2019). Nanoparticles in Polymer Systems for Biomedical Applications[M]. Waretown, USA: CRC Press.
  • Tong W, Gao C, M?Hwald H. (2005). Manipulating the properties of polyelectrolyte microcapsules by glutaraldehyde cross-linking. Chem Mater 17:4610–957.
  • Tong W, Song X, Gao C. (2012). Layer-by-layer assembly of microcapsules and their biomedical applications. Chem Soc Rev 41:6103–24.
  • Topbas O, Sariisik AM, Erkan G, Ek O. (2020). Photochromic microcapsules by coacervation and in situ polymerization methods for product-marking applications. Iran Polym J 29:117–132.
  • Tsouris V, Joo MK, Kim SH, et al. (2014). Nano carriers that enable co-delivery of chemotherapy and RNAi agents for treatment of drug-resistant cancers. Biotechnol Adv 32:1037–50.
  • Tulchinsky E, Demidov O, Kriajevska M, et al. (2019). EMT: A mechanism for escape from EGFR-targeted therapy in lung cancer. Biochim Biophys Acta Rev Cancer 1871:29–39.
  • van den Beucken JJJP, Walboomers XF, Nillesen STM, et al. (2007). In vitro and in vivo effects of deoxyribonucleic acid-based coatings funtionalized with vascular endothelial growth factor. Tissue Eng 13:711–20.,
  • Vautier D, Hemmerlé J, Vodouhe C, et al. (2003). 3-D surface charges modulate protrusive and contractile contacts of chondrosarcoma cells. Cell Motil Cytoskeleton 56:147–58.
  • Wajs E, Nielsen TT, Larsen KL, Fragoso A. (2016). Preparation of stimuli-responsive nano-sized capsules based on cyclodextrin polymers with redox or light switching properties. Nano Res 9:2070–2078.
  • Wang W, et al. (2020). Mussel inspired polydopamine: the bridge for targeting drug delivery system and synergistic cancer treatment. Macromol Biosci. 20:e2000222.
  • Wang X, Hu X, Daley A, et al. (2007). Nanolayer biomaterial coatings of silk fibroin for controlled release. J Control Release 121:190–9.
  • Wang Z, Dong L, Han L, et al. (2016). Self-assembled biodegradable nanoparticles and polysaccharides as biomimetic ECM nanostructures for the synergistic effect of RGD and BMP-2 on bone formation. Sci Rep 6:1–12.
  • Xie L, Tong W, Yu D, et al. (2012). Bovine serum albumin nanoparticles modified with multilayers and aptamers for pH-responsive and targeted anti-cancer drug delivery. J Mater Chem 22:6053–6060.
  • Yao Y, Su Z, Liang Y, Zhang N. (2015). pH-Sensitive carboxymethyl chitosan-modified cationic liposomes for sorafenib and siRNA co-delivery. Int J Nanomedicine 10:6185–97.
  • Yilmaz MD. (2016). Layer-by-layer hyaluronic acid/chitosan polyelectrolyte coated mesoporous silica nanoparticles as pH-responsive nanocontainers for optical bleaching of cellulose fabrics. Carbohydr Polym 146:174–180.
  • Zeng W, Zhang H, Deng Y, et al. (2020). Dual-response oxygen-generating MnO2. nanoparticles with polydopamine modification for combined photothermal-photodynamic therapy. Chemical Engineering Journal 389:124494.,
  • Zhang D, Lu J, Shi C, et al. (2021). Anti-corrosion performance of covalent layer-by-layer assembled films via click chemistry reaction on the copper surface. Corros Sci 178:109063.
  • Zhang D, Xia Y, Chen X, et al. (2019). PDMS-infused poly(High Internal Phase Emulsion) templates for the construction of slippery liquid-infused porous surfaces with self-cleaning and self-repairing properties. Langmuir 35:8276–8284.
  • Zhang W, Zhao Q, Yuan J. (2018). Porous polyelectrolytes: the interplay of charge and pores for new functionalities. Angew Chem Int Ed Engl 57:6754–6773.
  • Zhao S, Caruso F, Dähne L, et al. (2019). The future of layer-by-layer assembly: a tribute to ACS nano associate editor Helmuth Möhwald. ACS Nano 13:6151–69.
  • Zhong P, Meng H, Qiu J, et al. (2017). αvβ3 Integrin-targeted reduction-sensitive micellar mertansine prodrug: Superb drug loading, enhanced stability, and effective inhibition of melanoma growth in vivo. J Control Release 259:176–186.
  • Zhou J, Pishko MV, Lutkenhaus JL. (2014). Thermoresponsive layer-by-layer assemblies for nanoparticle-based drug delivery. Langmuir 30:5903–5910.
  • Zhou J, Romero G, Rojas E, et al. (2010a). Folic Acid Modified Poly (lactide‐co‐glycolide) Nanoparticles, Layer‐by‐Layer Surface Engineered for Targeted Delivery. Macromol Chem Phys 211:404–411.
  • Zhou J, Romero G, Rojas E, et al. (2010b). Layer by layer chitosan/alginate coatings on poly(lactide-co-glycolide) nanoparticles for antifouling protection and Folic acid binding to achieve selective cell targeting . J Colloid Interface Sci 345:241–247.
  • Zhu D, Tao W, Zhang H, et al. (2016). Docetaxel (DTX)-loaded polydopamine-modified TPGS-PLA nanoparticles as a targeted drug delivery system for the treatment of liver cancer. Acta Biomater 30:144–154.
  • Zhu Y, Gao C, He T, et al. (2003). Layer-by-layer assembly to modify poly(l-lactic acid) surface toward improving its cytocompatibility to human endothelial cells. Biomacromolecules 4:446–52.