3,345
Views
5
CrossRef citations to date
0
Altmetric
Review Article

Role of macrophage in nanomedicine-based disease treatment

, , , , , & show all
Pages 752-766 | Received 11 Jan 2021, Accepted 23 Mar 2021, Published online: 16 Apr 2021

References

  • Adegbola SO, Sahnan K, Warusavitarne J, et al. (2018). Anti-TNF therapy in Crohn’s disease. Int J Mol Sci 19:2244.
  • Ahsan F, Rivas IP, Khan MA, et al. (2002). Targeting to macrophages: role of physicochemical properties of particulate carriers–liposomes and microspheres–on the phagocytosis by macrophages. J Control Release 79:29–40.
  • Amash A, Wang L, Wang Y, et al. (2016). CD44 antibody inhibition of macrophage phagocytosis targets Fcγ receptor- and complement receptor 3-dependent mechanisms. J Immunol 196:3331–40.
  • An L, Wang Y, Lin J, et al. (2019). Macrophages-mediated delivery of small gold nanorods for tumor hypoxia photoacoustic imaging and enhanced photothermal therapy. ACS Appl Mater Interfaces 11:15251–61.
  • Ayer M, Klok H-A. (2017). Cell-mediated delivery of synthetic nano- and microparticles. J Control Release 259:92–104.
  • Baroni S, Ruggiero MR, Bitonto V, et al. (2020). In vivo assessment of tumour associated macrophages in murine melanoma obtained by low-field relaxometry in the presence of iron oxide particles. Biomaterials 236:119805.
  • Beck A, Goetsch L, Dumontet C, et al. (2017). Strategies and challenges for the next generation of antibody-drug conjugates. Nat Rev Drug Discov 16:315–37.
  • Blanco E, Shen H, Ferrari M. (2015). Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat Biotechnol 33:941–51.
  • Brown GD, Taylor PR, Reid DM, et al. (2002). Dectin-1 is a major beta-glucan receptor on macrophages. J Exp Med 196:407–12.
  • Buisson A, Bringer M-A, Barnich N, et al. (2016). Macrophages versus Escherichia coli: a decisive fight in Crohn’s disease. Inflamm Bowel Dis 22:2943–55.
  • Chalouni C, Doll S. (2018). Fate of antibody-drug conjugates in cancer cells. J Exp Clin Cancer Res 37:20.
  • Chao Y, Karmali PP, Mukthavaram R, et al. (2013). Direct recognition of superparamagnetic nanocrystals by macrophage scavenger receptor SR-AI. ACS Nano 7:4289–98.
  • Chari RV. (2008). Targeted cancer therapy: conferring specificity to cytotoxic drugs. Acc Chem Res 41:98–107.
  • Chau CH, Steeg PS, Figg WD. (2019). Antibody-drug conjugates for cancer. Lancet 394:793–804.
  • Chen BK, Chiu H-F, Yang C-Y. (2016). Statins are associated with a reduced risk of brain cancer: a population-based case-control study. Medicine 95:e3392.
  • Chen M, Daddy J C KA, Xiao Y, et al. (2017). Advanced nanomedicine for rheumatoid arthritis treatment: focus on active targeting. Expert Opin Drug Deliv 14:1141–4.
  • Chen W, Quan Y, Fan S, et al. (2020). Exosome-transmitted circular RNA hsa_circ_0051443 suppresses hepatocellular carcinoma progression. Cancer Lett 475:119–28.
  • Chen X, Liu Y, Wen Y, et al. (2019). A photothermal-triggered nitric oxide nanogenerator combined with siRNA for precise therapy of osteoarthritis by suppressing macrophage inflammation. Nanoscale 11:6693–709.
  • Chen Y, Song Y, Du W, et al. (2019). Tumor-associated macrophages: an accomplice in solid tumor progression. J Biomed Sci 26:78.
  • Cheng J, Zhang R, Li C, et al. (2018). A targeting nanotherapy for abdominal aortic aneurysms. J Am Coll Cardiol 72:2591–605.
  • Cheng L, Wang Y, Huang L. (2017). Exosomes from M1-polarized macrophages potentiate the cancer vaccine by creating a pro-inflammatory microenvironment in the lymph node. Mol Ther 25:1665–75.
  • Chiu H-T, Su C-K, Sun Y-C, et al. (2017). Albumin-gold nanorod nanoplatform for cell-mediated tumoritropic delivery with homogenous chemodrug distribution and enhanced retention ability. Theranostics 7:3034–52.
  • Choi M-R, Stanton-Maxey KJ, Stanley JK, et al. (2007). A cellular Trojan horse for delivery of therapeutic nanoparticles into tumors. Nano Lett 7:3759–65.
  • Choo YW, Kang M, Kim HY, et al. (2018). M1 macrophage-derived nanovesicles potentiate the anticancer efficacy of immune checkpoint inhibitors. ACS Nano 12:8977–93.
  • Colombo M, Raposo G, Théry C. (2014). Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annu Rev Cell Dev Biol 30:255–89.
  • Conde J, Bao C, Tan Y, et al. (2015). Dual targeted immunotherapy via in vivo delivery of biohybrid RNAi-peptide nanoparticles to tumour-associated macrophages and cancer cells. Adv Funct Mater 25:4183–94.
  • Crielaard BJ, Lammers T, Schiffelers RM, et al. (2012). Drug targeting systems for inflammatory disease: one for all, all for one. J Control Release 161:225–34.
  • Cullis J, Siolas D, Avanzi A, et al. (2017). Macropinocytosis of nab-paclitaxel drives macrophage activation in pancreatic cancer. Cancer Immunol Res 5:182–90.
  • Dancy JG, Wadajkar AS, Connolly NP, et al. (2020). Decreased nonspecific adhesivity, receptor-targeted therapeutic nanoparticles for primary and metastatic breast cancer. Sci Adv 6:eaax3931.
  • De Pablo-Fernández E, Courtney R, Warner TT, et al. (2018). A histologic study of the Circadian system in Parkinson disease, multiple system atrophy, and progressive supranuclear palsy. JAMA Neurol 75:1008–12.
  • Dehne N, Mora J, Namgaladze D, et al. (2017). Cancer cell and macrophage cross-talk in the tumor microenvironment. Curr Opin Pharmacol 35:12–9.
  • DeNardo DG, Ruffell B. (2019). Macrophages as regulators of tumour immunity and immunotherapy. Nat Rev Immunol 19:369–82.
  • Duncan R, Gaspar R. (2011). Nanomedicine(s) under the microscope. Mol Pharm 8:2101–41.
  • Early Breast Cancer Trialists’ Collaborative Group. (2011). Effect of radiotherapy after breast-conserving surgery on 10-year recurrence and 15-year breast cancer death: meta-analysis of individual patient data for 10,801 women in 17 randomised trials. Lancet 378:1707–16.
  • Eisinger S, Sarhan D, Boura VF, et al. (2020). Targeting a scavenger receptor on tumor-associated macrophages activates tumor cell killing by natural killer cells. Proc Natl Acad Sci USA 117:32005–16.
  • Emanuel EJ, Wendler D, Grady C. (2000). What makes clinical research ethical? JAMA 283:2701–11.
  • Etzerodt A, Tsalkitzi K, Maniecki M, et al. (2019). Specific targeting of CD163+ TAMs mobilizes inflammatory monocytes and promotes T cell-mediated tumor regression . J Exp Med 216:2394–411.
  • Fang J, Nakamura H, Maeda H. (2011). The EPR effect: unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect. Adv Drug Deliv Rev 63:136–51.
  • Fang J, Sawa, T, Maeda H, eds. (2003). Factors and mechanism of “EPR” effect and the enhanced antitumor effects of macromolecular drugs including SMANCS. In: Polymer drugs in the clinical stage: advantages and prospects. Boston (MA): Springer, 29–49.
  • Figueiredo P, Lepland A, Scodeller P, et al. (2020). Peptide-guided resiquimod-loaded lignin nanoparticles convert tumor-associated macrophages from M2 to M1 phenotype for enhanced chemotherapy. Acta Biomater. S1742-7061(20)30561-4.
  • Fisher EA, Feig JE, Hewing B, et al. (2012). High-density lipoprotein function, dysfunction, and reverse cholesterol transport. Arterioscler Thromb Vasc Biol 32:2813–20.
  • Fleige G, Nolte C, Synowitz M, et al. (2001). Magnetic labeling of activated microglia in experimental gliomas. Neoplasia 3:489–99.
  • Flores AM, Hosseini-Nassab N, Jarr K-U, et al. (2020). Pro-efferocytic nanoparticles are specifically taken up by lesional macrophages and prevent atherosclerosis. Nat Nanotechnol 15:154–61.
  • Flühmann B, Ntai I, Borchard G, et al. (2019). Nanomedicines: the magic bullets reaching their target? Eur J Pharm Sci 128:73–80.
  • Forest V, Leclerc L, Hochepied J-F, et al. (2017). Impact of cerium oxide nanoparticles shape on their in vitro cellular toxicity. Toxicol in Vitro 38:136–41.
  • Frambach SJCM, de Haas R, Smeitink JAM, et al. (2020). Brothers in arms: ABCA1- and ABCG1-mediated cholesterol efflux as promising targets in cardiovascular disease treatment. Pharmacol Rev 72:152–90.
  • Fukui S, Iwamoto N, Takatani A, et al. (2018). M1 and M2 monocytes in rheumatoid arthritis: a contribution of imbalance of M1/M2 monocytes to osteoclastogenesis. Front Immunol 8:1958.
  • Fusser M, Øverbye A, Pandya AD, et al. (2019). Cabazitaxel-loaded poly(2-ethylbutyl cyanoacrylate) nanoparticles improve treatment efficacy in a patient derived breast cancer xenograft. J Control Release 293:183–92.
  • Gabizon AA, Patil Y, La-Beck NM. (2016). New insights and evolving role of pegylated liposomal doxorubicin in cancer therapy. Drug Resist Updat 29:90–106.
  • Gaist D, Andersen L, Hallas J, et al. (2013). Use of statins and risk of glioma: a nationwide case-control study in Denmark. Br J Cancer 108:715–20.
  • Ganbold T, Baigude H. (2018). Design of mannose-functionalized curdlan nanoparticles for macrophage-targeted siRNA delivery. ACS Appl Mater Interfaces 10:14463–74.
  • Gao F, Zhang C, Qiu W-X, et al. (2018). PD-1 blockade for improving the antitumor efficiency of polymer–doxorubicin nanoprodrug. Small 14:1802403.
  • Go G, Lee J, Choi D-S, et al. (2019). Extracellular vesicle-mimetic ghost nanovesicles for delivering anti-inflammatory drugs to mitigate gram-negative bacterial outer membrane vesicle-induced systemic inflammatory response syndrome. Adv Healthc Mater 8:e1801082.
  • Guo M, et al. (2019). Autologous tumor cell–derived microparticle-based targeted chemotherapy in lung cancer patients with malignant pleural effusion. Sci Transl Med 11:eaat5690.
  • Hagimori M, Chinda Y, Suga T, et al. (2018). Synthesis of high functionality and quality mannose-grafted lipids to produce macrophage-targeted liposomes. Eur J Pharm Sci 123:153–61.
  • Halley PD, Lucas CR, McWilliams EM, et al. (2016). Daunorubicin-loaded DNA origami nanostructures circumvent drug-resistance mechanisms in a leukemia model. Small 12:308–20.
  • Haney MJ, Zhao Y, Li S, et al. (2011). Cell-mediated transfer of catalase nanoparticles from macrophages to brain endothelial, glial and neuronal cells. Nanomedicine 6:1215–30.
  • He C, Hu Y, Yin L, et al. (2010). Effects of particle size and surface charge on cellular uptake and biodistribution of polymeric nanoparticles. Biomaterials 31:3657–66.
  • He J, Yang Y, Zhou X, et al. (2020). Shuttle/sink model composed of β-cyclodextrin and simvastatin-loaded discoidal reconstituted high-density lipoprotein for enhanced cholesterol efflux and drug uptake in macrophage/foam cells. J Mater Chem B 8:1496–506.
  • Hickey WF. (1999). Leukocyte traffic in the central nervous system: the participants and their roles. Semin Immunol 11:125–37.
  • Holder B, Jones T, Sancho Shimizu V, et al. (2016). Macrophage exosomes induce placental inflammatory cytokines: a novel mode of maternal-placental messaging. Traffic 17:168–78.
  • Howard D, Garcia-Parra J, Healey GD, et al. (2016). Antibody-drug conjugates and other nanomedicines: the frontier of gynaecological cancer treatment. Interface Focus 6:20160054.
  • Hristodorov D, Mladenov R, von Felbert V, et al. (2015). Targeting CD64 mediates elimination of M1 but not M2 macrophages in vitro and in cutaneous inflammation in mice and patient biopsies. MAbs 7:853–62.
  • Huang Y, Guo J, Gui S. (2018). Orally targeted galactosylated chitosan poly(lactic-co-glycolic acid) nanoparticles loaded with TNF-ɑ siRNA provide a novel strategy for the experimental treatment of ulcerative colitis. Eur J Pharm Sci 125:232–43.
  • Huang Z, Sun X, Liu X, et al. (2018). Macrophages as an active tumour-targeting carrier of SN38-nanoparticles for cancer therapy. J Drug Target 26:458–65.
  • Hurdayal R, Nieuwenhuizen NE, Khutlang R, et al. (2019). Inflammatory dendritic cells, regulated by IL-4 receptor alpha signaling, control replication, and dissemination of leishmania major in mice. Front Cell Infect Microbiol 9:479.
  • Hussaarts L, Mühlebach S, Shah VP, et al. (2017). Equivalence of complex drug products: advances in and challenges for current regulatory frameworks. Ann NY Acad Sci 1407:39–49.
  • Jain S, Tran T-H, Amiji M. (2015). Macrophage repolarization with targeted alginate nanoparticles containing IL-10 plasmid DNA for the treatment of experimental arthritis. Biomaterials 61:162–77.
  • Jasinski DL, Li H, Guo P. (2018). The effect of size and shape of RNA nanoparticles on biodistribution. Mol Ther 26:784–92.
  • Jiang P, Gao W, Ma T, et al. (2019). CD137 promotes bone metastasis of breast cancer by enhancing the migration and osteoclast differentiation of monocytes/macrophages. Theranostics 9:2950–66.
  • Jin H, He Y, Zhao P, et al. (2019). Targeting lipid metabolism to overcome EMT-associated drug resistance via integrin β3/FAK pathway and tumor-associated macrophage repolarization using legumain-activatable delivery. Theranostics 9:265–78.
  • Kalinec GM, Gao L, Cohn W, et al. (2019). Extracellular vesicles from auditory cells as nanocarriers for anti-inflammatory drugs and pro-resolving mediators. Front Cell Neurosci 13:530.
  • Keewan Ea, Naser SA. (2020). The role of notch signaling in macrophages during inflammation and infection: implication in rheumatoid arthritis? Cells 9:111.
  • Khawar IA, Kim JH, Kuh H-J. (2015). Improving drug delivery to solid tumors: priming the tumor microenvironment. J Control Release 201:78–89.
  • Khera E, Thurber GM. (2018). Pharmacokinetic and immunological considerations for expanding the therapeutic window of next-generation antibody-drug conjugates. BioDrugs 32:465–80.
  • Kim J, Kim HY, Song SY, et al. (2019). Synergistic oxygen generation and reactive oxygen species scavenging by manganese ferrite/ceria co-decorated nanoparticles for rheumatoid arthritis treatment. ACS Nano 13:3206–17.
  • Kriegel C, Amiji M. (2011). Oral TNF-α gene silencing using a polymeric microsphere-based delivery system for the treatment of inflammatory bowel disease. J Control Release 150:77–86.
  • Kumar CSSR, Mohammad F. (2011). Magnetic nanomaterials for hyperthermia-based therapy and controlled drug delivery. Adv Drug Deliv Rev 63:789–808.
  • Kurahara H, Shinchi H, Mataki Y, et al. (2011). Significance of M2-polarized tumor-associated macrophage in pancreatic cancer. J Surg Res 167:e211–9.
  • Lameijer MA, Tang J, Nahrendorf M, et al. (2013). Monocytes and macrophages as nanomedicinal targets for improved diagnosis and treatment of disease. Expert Rev Mol Diagn 13:567–80.
  • Lawrence T, Natoli G. (2011). Transcriptional regulation of macrophage polarization: enabling diversity with identity. Nat Rev Immunol 11:750–61.
  • Leidal AM, Huang HH, Marsh T, et al. (2020). The LC3-conjugation machinery specifies the loading of RNA-binding proteins into extracellular vesicles. Nat Cell Biol 22:187–99.
  • Li F, Ulrich M, Jonas M, et al. (2017). Tumor-associated macrophages can contribute to antitumor activity through FcγR-mediated processing of antibody-drug conjugates. Mol Cancer Ther 16:1347–54.
  • Li R, He Y, Zhu Y, et al. (2019). Route to rheumatoid arthritis by macrophage-derived microvesicle-coated nanoparticles. Nano Lett 19:124–34.
  • Li X, Li C, Zhang L, et al. (2020). The significance of exosomes in the development and treatment of hepatocellular carcinoma. Mol Cancer 19:1.
  • Li X, Zhu M, Penfold ME, et al. (2014). Activation of CXCR7 limits atherosclerosis and improves hyperlipidemia by increasing cholesterol uptake in adipose tissue. Circulation 129:1244–53.
  • Li Z, Sun L, Zhang Y, et al. (2016). Shape effect of glyco-nanoparticles on macrophage cellular uptake and immune response. ACS Macro Lett 5:1059–64.
  • Libby P. (2002). Inflammation in atherosclerosis. Nature 420:868–74.
  • Liu X, Jiang J, Chan R, et al. (2019). Improved efficacy and reduced toxicity using a custom-designed irinotecan-delivering silicasome for orthotopic colon cancer. ACS Nano 13:38–53.
  • Liu X, Tang I, Wainberg ZA, et al. (2020). Safety considerations of cancer nanomedicine-a key step toward translation. Small 16:e2000673.
  • Liu Y, Wen Y, Chen X, et al. (2019). Inflammation-responsive functional Ru nanoparticles combining a tumor-associated macrophage repolarization strategy with phototherapy for colorectal cancer therapy. J Mater Chem B 7:6210–23.
  • Locati M, Curtale G, Mantovani A. (2020). Diversity, mechanisms, and significance of macrophage plasticity. Annu Rev Pathol 15:123–47.
  • Ma J, Liu R, Wang X, et al. (2015). Crucial role of lateral size for graphene oxide in activating macrophages and stimulating pro-inflammatory responses in cells and animals. ACS Nano 9:10498–515.
  • Madsen SJ, Baek S-K, Makkouk AR, et al. (2012). Macrophages as cell-based delivery systems for nanoshells in photothermal therapy. Ann Biomed Eng 40:507–15.
  • Mantovani A, Sica A, Sozzani S, et al. (2004). The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol 25:677–86.
  • Maurizi L, Papa A-L, Dumont L, et al. (2015). Influence of surface charge and polymer coating on internalization and biodistribution of polyethylene glycol-modified iron oxide nanoparticles. J Biomed Nanotechnol 11:126–36.
  • Mause SF, Weber C. (2010). Microparticles: protagonists of a novel communication network for intercellular information exchange. Circ Res 107:1047–57.
  • Mellman I, Coukos G, Dranoff G. (2011). Cancer immunotherapy comes of age. Nature 480:480–9.
  • Miao L, Lin CM, Huang L. (2015). Stromal barriers and strategies for the delivery of nanomedicine to desmoplastic tumors. J Control Release 219:192–204.
  • Min Y, Caster JM, Eblan MJ, et al. (2015). Clinical translation of nanomedicine. Chem Rev 115:11147–90.
  • Mo X, Zheng Z, He Y, et al. (2018). Antiglioma via regulating oxidative stress and remodeling tumor-associated macrophage using lactoferrin-mediated biomimetic codelivery of simvastatin/fenretinide. J Control Release 287:12–23.
  • Mohammadi M, Li Y, Abebe DG, et al. (2016). Folate receptor targeted three-layered micelles and hydrogels for gene delivery to activated macrophages. J Control Release 244:269–79.
  • Moore KJ, Tabas I. (2011). Macrophages in the pathogenesis of atherosclerosis. Cell 145:341–55.
  • Mosser DM, Edwards JP. (2008). Exploring the full spectrum of macrophage activation. Nat Rev Immunol 8:958–69.
  • Moura CC, Segundo MA, Neves J. d, et al. (2014). Co-association of methotrexate and SPIONs into anti-CD64 antibody-conjugated PLGA nanoparticles for theranostic application. Int J Nanomedicine 9:4911–22.
  • Murray PJ, Wynn TA. (2011a). Obstacles and opportunities for understanding macrophage polarization. J Leukoc Biol 89:557–63.
  • Murray PJ, Wynn TA. (2011b). Protective and pathogenic functions of macrophage subsets. Nat Rev Immunol 11:723–37.
  • Na YR, Stakenborg M, Seok SH, et al. (2019). Macrophages in intestinal inflammation and resolution: a potential therapeutic target in IBD. Nat Rev Gastroenterol Hepatol 16:531–43.
  • Nahrendorf M, Swirski FK. (2016). Abandoning M1/M2 for a network model of macrophage function. Circ Res 119:414–7.
  • Nally FK, Santi CD, McCoy CE. (2019). Nanomodulation of macrophages in multiple sclerosis. Cells 8:543.
  • Nathan C, Ding A. (2010). Nonresolving inflammation. Cell 140:871–82.
  • Ngambenjawong C, Gustafson HH, Pun SH. (2017). Progress in tumor-associated macrophage (TAM)-targeted therapeutics. Adv Drug Deliv Rev 114:206–21.
  • Nguyen M-A, Wyatt H, Susser L, et al. (2019). Delivery of MicroRNAs by chitosan nanoparticles to functionally alter macrophage cholesterol efflux in vitro and in vivo. ACS Nano 13:6491–505.
  • Ni R, Song G, Fu X, et al. (2020). Reactive oxygen species-responsive dexamethasone-loaded nanoparticles for targeted treatment of rheumatoid arthritis via suppressing the iRhom2/TNF-α/BAFF signaling pathway. Biomaterials 232:119730.
  • Öhman T, Teirilä L, Lahesmaa-Korpinen A-M, et al. (2014). Dectin-1 pathway activates robust autophagy-dependent unconventional protein secretion in human macrophages. J Immunol 192:5952–62.
  • Orihuela R, McPherson CA, Harry GJ. (2016). Microglial M1/M2 polarization and metabolic states. Br J Pharmacol 173:649–65.
  • Ouimet M, Barrett TJ, Fisher EA. (2019). HDL and reverse cholesterol transport. Circ Res 124:1505–18.
  • Ovais M, Guo M, Chen C. (2019). Tailoring nanomaterials for targeting tumor-associated macrophages. Adv Mater 31:1808303.
  • Pang L, Zhang C, Qin J, et al. (2017). A novel strategy to achieve effective drug delivery: exploit cells as carrier combined with nanoparticles. Drug Deliv 24:83–91.
  • Patel S, Kim J, Herrera M, et al. (2019). Brief update on endocytosis of nanomedicines. Adv Drug Deliv Rev 144:90–111.
  • Pelaz B, Alexiou C, Alvarez-Puebla RA, et al. (2017). Diverse applications of nanomedicine. ACS Nano 11:2313–81.
  • Pollard JW. (2004). Tumour-educated macrophages promote tumour progression and metastasis. Nat Rev Cancer 4:71–78.
  • Prabhakar U, Maeda H, Jain RK, et al. (2013). Challenges and key considerations of the enhanced permeability and retention effect for nanomedicine drug delivery in oncology. Cancer Res 73:2412–7.
  • Qadri M, Almadani S, Jay GD, et al. (2018). Role of CD44 in regulating TLR2 activation of human macrophages and downstream expression of proinflammatory cytokines. J Immunol 200:758–67.
  • Qi R, Majoros I, Misra AC, et al. (2015). Folate receptor-targeted dendrimer-methotrexate conjugate for inflammatory arthritis. j Biomed Nanotechnol 11:1431–41.
  • Qian Y, Qiao S, Dai Y, et al. (2017). Molecular-targeted immunotherapeutic strategy for melanoma via dual-targeting nanoparticles delivering small interfering RNA to tumor-associated macrophages. ACS Nano 11:9536–49.
  • Qiang L, Cai Z, Jiang W, et al. (2019). A novel macrophage-mediated biomimetic delivery system with NIR-triggered release for prostate cancer therapy. J Nanobiotechnology 17:83.
  • Ran L, Tan X, Li Y, et al. (2016). Delivery of oncolytic adenovirus into the nucleus of tumorigenic cells by tumor microparticles for virotherapy. Biomaterials 89:56–66.
  • Rayamajhi S, Nguyen TDT, Marasini R, et al. (2019). Macrophage-derived exosome-mimetic hybrid vesicles for tumor targeted drug delivery. Acta Biomater 94:482–94.
  • Rayner KJ, Suarez Y, Davalos A, et al. (2010). MiR-33 contributes to the regulation of cholesterol homeostasis. Science 328:1570–3.
  • Regdon Z, Robaszkiewicz A, Kovács K, et al. (2019). LPS protects macrophages from AIF-independent parthanatos by downregulation of PARP1 expression, induction of SOD2 expression, and a metabolic shift to aerobic glycolysis. Free Radic Biol Med 131:184–96.
  • Roberts AB, Sporn MB, Assoian RK, et al. (1986). Transforming growth factor type beta: rapid induction of fibrosis and angiogenesis in vivo and stimulation of collagen formation in vitro. Proc Natl Acad Sci USA 83:4167–71.
  • Ruan G-X, Chen Y-Z, Yao X-L, et al. (2014). Macrophage mannose receptor-specific gene delivery vehicle for macrophage engineering. Acta Biomater 10:1847–55.
  • Sahay G, Alakhova DY, Kabanov AV. (2010). Endocytosis of nanomedicines. J Control Release 145:182–95.
  • Scali E, Mignogna C, Di Vito A, et al. (2016). Inflammation and macrophage polarization in cutaneous melanoma: histopathological and immunohistochemical study. Int J Immunopathol Pharmacol 29:715–9.
  • Scodeller P, Simón-Gracia L, Kopanchuk S, et al. (2017). Precision targeting of tumor macrophages with a CD206 binding peptide. Sci Rep 7:14655.
  • Senokuchi T, Matsumura T, Sakai M, et al. (2005). Statins suppress oxidized low density lipoprotein-induced macrophage proliferation by inactivation of the small G protein-p38 MAPK pathway. J Biol Chem 280:6627–33.
  • Sethi V, Rubinstein I, Kuzmis A, et al. (2013). Novel, biocompatible, and disease modifying VIP nanomedicine for rheumatoid arthritis. Mol Pharm 10:728–738.,
  • Sevic I, Spinelli FM, Cantero MJ, et al. (2019). The role of the tumor microenvironment in the development and progression of hepatocellular carcinoma. In: Tirnitz-Parker JEE, ed. Hepatocellular carcinoma. Brisbane (Australia): Codon Publication.
  • Singh A, Talekar M, Raikar A, et al. (2014). Macrophage-targeted delivery systems for nucleic acid therapy of inflammatory diseases. J Control Release 190:515–30.
  • Singh R, Mishra MK, Aggarwal H. (2017). Inflammation, immunity, and cancer. Mediators Inflamm 2017:6027305.
  • Staudacher AH, Liapis V, Tieu W, et al. (2020). Tumour-associated macrophages process drug and radio-conjugates of the dead tumour cell-targeting APOMAB® antibody. J Control Release 327:779–87.
  • Stein M, Keshav S, Harris N, et al. (1992). Interleukin 4 potently enhances murine macrophage mannose receptor activity: a marker of alternative immunologic macrophage activation. J Exp Med 176:287–92.
  • Steinbach EC, Plevy SE. (2014). The role of macrophages and dendritic cells in the initiation of inflammation in IBD. Inflamm Bowel Dis 20:166–75.
  • Stremersch S, De Smedt SC, Raemdonck K. (2016). Therapeutic and diagnostic applications of extracellular vesicles. J Control Release 244:167–83.
  • Su Z, Xiao Z, Wang Y, et al. (2020). Codelivery of anti-PD-1 antibody and paclitaxel with matrix metalloproteinase and pH dual-sensitive micelles for enhanced tumor chemoimmunotherapy. Small 16:1906832.
  • Tang J, Lobatto ME, Hassing L, et al. (2015). Inhibiting macrophage proliferation suppresses atherosclerotic plaque inflammation. Sci Adv 1:e1400223.
  • Tang T-T, Lv L-L, Wang B, et al. (2019). Employing macrophage-derived microvesicle for kidney-targeted delivery of dexamethasone: an efficient therapeutic strategy against renal inflammation and fibrosis. Theranostics 9:4740–55.
  • Tariq M, Zhang J, Liang G, et al. (2017). Macrophage polarization: anti-cancer strategies to target tumor-associated macrophage in breast cancer. J Cell Biochem 118:2484–501.
  • Thakor AS, Jokerst J, Zavaleta C, et al. (2011). Gold nanoparticles: a revival in precious metal administration to patients. Nano Lett 11:4029–36.
  • Thepen T, van Vuuren AJ, Kiekens RC, et al. (2000). Resolution of cutaneous inflammation after local elimination of macrophages. Nat Biotechnol 18:48–51.
  • Thomas TP, Goonewardena SN, Majoros IJ, et al. (2011). Folate-targeted nanoparticles show efficacy in the treatment of inflammatory arthritis. Arthritis Rheum 63:2671–80.
  • Tiwari M, Kumar A, Sinha RA, et al. (2006). Mechanism of 4-HPR-induced apoptosis in glioma cells: evidences suggesting role of mitochondrial-mediated pathway and endoplasmic reticulum stress. Carcinogenesis 27:2047–58.
  • Tong H-I, Kang W, Shi Y, et al. (2016). Physiological function and inflamed-brain migration of mouse monocyte-derived macrophages following cellular uptake of superparamagnetic iron oxide nanoparticles-Implication of macrophage-based drug delivery into the central nervous system. Int J Pharm 505:271–82.
  • Tran T-H, Rastogi R, Shelke J, et al. (2015). Modulation of macrophage functional polarity towards anti-inflammatory phenotype with plasmid DNA Delivery in CD44 targeting hyaluronic acid nanoparticles. Sci Rep 5:16632.
  • Ullah S, Seidel K, Türkkan S, et al. (2019). Macrophage entrapped silica coated superparamagnetic iron oxide particles for controlled drug release in a 3D cancer model. J Control Release 294:327–36.
  • van der V. (2010). Reverse cholesterol transport: from classical view to new insights. World J Gastroenterol 16:5908–15.
  • van Niel G, D'Angelo G, Raposo G. (2018). Shedding light on the cell biology of extracellular vesicles. Nat Rev Mol Cell Biol 19:213–28.
  • Varghese B, Vlashi E, Xia W, et al. (2014). Folate receptor-β in activated macrophages: ligand binding and receptor recycling kinetics. Mol Pharmaceutics 11:3609–16.
  • Wagle N, Emery C, Berger MF, et al. (2011). Dissecting therapeutic resistance to RAF inhibition in melanoma by tumor genomic profiling. J Clin Oncol 29:3085–96.
  • Wang P, Wang H, Huang Q, et al. (2019). Exosomes from M1-polarized macrophages enhance paclitaxel antitumor activity by activating macrophages-mediated inflammation. Theranostics 9:1714–27.
  • Wang T, Liu H, Lian G, et al. (2017). HIF1α-induced glycolysis metabolism is essential to the activation of inflammatory macrophages. Mediators Inflamm 2017:9029327.
  • Wang T, Zhang J, Hou T, et al. (2019). Selective targeting of tumor cells and tumor associated macrophages separately by twin-like core-shell nanoparticles for enhanced tumor-localized chemoimmunotherapy. Nanoscale 11:13934–46.
  • Wang Y, Liu Y, Luehmann H, et al. (2012). Evaluating the pharmacokinetics and in vivo cancer targeting capability of Au nanocages by positron emission tomography imaging. ACS Nano 6:5880–8.
  • Wei AH, Tiong IS. (2017). Midostaurin, enasidenib, CPX-351, gemtuzumab ozogamicin, and venetoclax bring new hope to AML. Blood 130:2469–74.
  • Wu G, Zhang J, Zhao Q, et al. (2020). Molecularly engineered macrophage-derived exosomes with inflammation tropism and intrinsic heme biosynthesis for atherosclerosis treatment. Angew Chem Int Ed Engl 59:4068–74.
  • Wynn TA, Chawla A, Pollard JW. (2013). Macrophage biology in development, homeostasis and disease. Nature 496:445–55.
  • Xiao B, Laroui H, Ayyadurai S, et al. (2013). Mannosylated bioreducible nanoparticle-mediated macrophage-specific TNF-α RNA interference for IBD therapy. Biomaterials 34:7471–82.
  • Xiao B, Merlin D. (2012). Oral colon-specific therapeutic approaches toward treatment of inflammatory bowel disease. Expert Opin Drug Deliv 9:1393–407.
  • Xiao S, Tang Y, Lv Z, et al. (2019). Nanomedicine - advantages for their use in rheumatoid arthritis theranostics. J Control Release 316:302–16.
  • Xie J, Huang Z, Yu X, et al. (2019). Clinical implications of macrophage dysfunction in the development of osteoarthritis of the knee. Cytokine Growth Factor Rev 46:36–44.
  • Xu F, Yuan Y, Shan X, et al. (2009). Long-circulation of hemoglobin-loaded polymeric nanoparticles as oxygen carriers with modulated surface charges. Int J Pharm 377:199–206.
  • Xu X, Ho W, Zhang X, et al. (2015). Cancer nanomedicine: from targeted delivery to combination therapy. Trends Mol Med 21:223–32.
  • Xue J, Schmidt SV, Sander J, et al. (2014). Transcriptome-based network analysis reveals a spectrum model of human macrophage activation. Immunity 40:274–88.
  • Yang Y, Guo L, Wang Z, et al. (2021). Targeted silver nanoparticles for rheumatoid arthritis therapy via macrophage apoptosis and Re-polarization. Biomaterials 264:120390.
  • Yang Z, Sun Z, Ren Y, et al. (2019). Advances in nanomaterials for use in photothermal and photodynamic therapeutics (review). Mol Med Rep 20:5–15.
  • Ye Z, Zhang T, He W, et al. (2018). Methotrexate-loaded extracellular vesicles functionalized with therapeutic and targeted peptides for the treatment of glioblastoma multiforme. ACS Appl Mater Interfaces 10:12341–50.
  • Yin M, Li X, Tan S, et al. (2016). Tumor-associated macrophages drive spheroid formation during early transcoelomic metastasis of ovarian cancer. J Clin Invest 126:4157–73.
  • Yu X, Guo C, Fisher PB, et al. (2015). Scavenger receptors: emerging roles in cancer biology and immunology. Adv Cancer Res 128:309–64.
  • Yu X-H, Zhang D-W, Zheng X-L, et al. (2019). Cholesterol transport system: an integrated cholesterol transport model involved in atherosclerosis. Prog Lipid Res 73:65–91.
  • Zanganeh S, Hutter G, Spitler R, et al. (2016). Iron oxide nanoparticles inhibit tumour growth by inducing pro-inflammatory macrophage polarization in tumour tissues. Nat Nanotechnol 11:986–94.
  • Zeng X, Sun J, Li S, et al. (2020). Blood-triggered generation of platinum nanoparticle functions as an anti-cancer agent. Nat Commun 11:567.
  • Zhang H, Lin C, Zeng C, et al. (2018). Synovial macrophage M1 polarisation exacerbates experimental osteoarthritis partially through R-spondin-2. Ann Rheum Dis 77:1524–34.
  • Zhang H, Zhang X, Ren Y, et al. (2019). An in situ microenvironmental nano-regulator to inhibit the proliferation and metastasis of 4T1 tumor. Theranostics 9:3580–94.
  • Zhang X, Du J, Guo Z, et al. (2019). Efficient near infrared light triggered nitric oxide release nanocomposites for sensitizing mild photothermal therapy. Adv Sci 6:1801122.
  • Zhao H, Wang YL, Peng JR, et al. (2017). Biodegradable self-assembled micelles based on MPEG-PTMC copolymers: an ideal drug delivery system for vincristine. J Biomed Nanotechnol 13:427–36.
  • Zhao J, Zhang Z, Xue Y, et al. (2018). Anti-tumor macrophages activated by ferumoxytol combined or surface-functionalized with the TLR3 agonist poly (I:C) promote melanoma regression. Theranostics 8:6307–21.
  • Zhao X, Ng SX, Heng BC, et al. (2013). Cytotoxicity of hydroxyapatite nanoparticles is shape and cell dependent. Arch Toxicol 87:1037–52.
  • Zhou F, Mei J, Yang S, et al. (2020). Modified ZIF-8 nanoparticles attenuate osteoarthritis by reprogramming the metabolic pathway of synovial macrophages. ACS Appl Mater Interfaces 12:2009–22.
  • Zhu X, Shen H, Yin X, et al. (2019). Macrophages derived exosomes deliver miR-223 to epithelial ovarian cancer cells to elicit a chemoresistant phenotype. J Exp Clin Cancer Res 38:81.