1,905
Views
8
CrossRef citations to date
0
Altmetric
Research Article

Tumor-targeted Gd-doped mesoporous Fe3O4 nanoparticles for T1/T2 MR imaging guided synergistic cancer therapy

ORCID Icon, , , , , , , , , , , & show all
Pages 787-799 | Received 08 Feb 2021, Accepted 23 Mar 2021, Published online: 19 Apr 2021

References

  • Arranja AG, Pathak V, Lammers T, Shi Y. (2017). Tumor-targeted nanomedicines for cancer theranostics. Pharmacol Res 115:87–95.
  • Berges O, Dhermain F, Bidault F. (2010). Radiation therapy and medical imaging. Bull Cancer 97:225–31.
  • Boehm I, Heverhagen JT. (2018). Delayed reaction following gadolinium-based contrast agent application. Magn Reson Imaging 50:10–1.
  • Chen PJ, Hu SH, Hsiao CS, et al. (2011). Multifunctional magnetically removable nanogated lids of Fe3O4-capped mesoporous silica nanoparticles for intracellular controlled release and MR imaging. J Mater Chem 21:2535–43.
  • Cheng L, Yang K, Li Y, et al. (2011). Facile preparation of multifunctional upconversion nanoprobes for multimodal imaging and dual-targeted photothermal therapy. Angew Chem Int Ed Engl 50:7385–90.
  • Cheng L, Yang K, Li Y, et al. (2012). Multifunctional nanoparticles for upconversion luminescence/MR multimodal imaging and magnetically targeted photothermal therapy. Biomaterials 33:2215–22.
  • Courant T, Roullin VG, Cadiou C, et al. (2012). Hydrogels incorporating GdDOTA: towards highly efficient dual T1/T2 MRI contrast agents. Angew Chem Int Ed Engl 51:9119–22.
  • Cuevas C, Shibata D. (2009). Medical imaging in the diagnosis and management of cancer pain. Curr Pain Headache Rep 13:261–70.
  • Czeyda-Pommersheim F, Martin DR, Costello JR, Kalb B. (2017). Contrast agents for MR imaging. Magn Reson Imaging Clin N Am 25:705–11.
  • Fan Z, Fu PP, Yu H, Ray PC. (2014). Theranostic nanomedicine for cancer detection and treatment. J Food Drug Anal 22:3–17.
  • Fernando R, Downs J, Maples D, Ranjan A. (2013). MRI-guided monitoring of thermal dose and targeted drug delivery for cancer therapy. Pharm Res 30:2709–17.
  • Gotwals P, Cameron S, Cipolletta D, et al. (2017). Prospects for combining targeted and conventional cancer therapy with immunotherapy. Nat Rev Cancer 17:286–301.
  • Guo S, Li D, Zhang L, et al. (2009). Monodisperse mesoporous superparamagnetic single-crystal magnetite nanoparticles for drug delivery. Biomaterials 30:1881–9.
  • Gupta A, de Campo L, Rehmanjan B, et al. (2015). Evaluation of Gd-DTPA-monophytanyl and phytantriol nanoassemblies as potential MRI contrast agents. Langmuir 31:1556–63.
  • Hou X, Tao Y, Pang Y, et al. (2018). Nanoparticle-based photothermal and photodynamic immunotherapy for tumor treatment. Int J Cancer 143:3050–60.
  • Huang X, Zhang W, Guan G, et al. (2017). Design and functionalization of the NIR-responsive photothermal semiconductor nanomaterials for cancer theranostics. Acc Chem Res 50:2529–38.
  • Kijima S, Sasaki T, Nagata K, et al. (2014). Preoperative evaluation of colorectal cancer using CT colonography, MRI, and PET/CT. World J Gastroenterol 20:16964–75.
  • Lee YT, Tan YJ, Oon CE. (2018). Molecular targeted therapy: treating cancer with specificity. Eur J Pharmacol 834:188–96.
  • Li J, You J, Wu C, et al. (2018). T1-T2 molecular magnetic resonance imaging of renal carcinoma cells based on nano-contrast agents. Int J Nanomedicine 13:4607–25.
  • Liu L, Li X, Chen L, Zhang X. (2018). Nanoscale functional biomaterials for cancer theranostics. Curr Med Chem 25:2987–3000.
  • Liu Y, Bhattarai P, Dai Z, Chen X. (2019). Photothermal therapy and photoacoustic imaging via nanotheranostics in fighting cancer. Chem Soc Rev 48:2053–108.
  • Lu J, Feng F, Jin Z. (2013). Cancer diagnosis and treatment guidance: role of MRI and MRI probes in the era of molecular imaging. Curr Pharm Biotechnol 14:714–22.
  • Perez-Herrero E, Fernandez-Medarde A. (2015). Advanced targeted therapies in cancer: drug nanocarriers, the future of chemotherapy. Eur J Pharm Biopharm 93:52–79.
  • Phukan B, Mukherjee C, Goswami U, et al. (2018). A new bis(aquated) high relaxivity Mn(II) complex as an alternative to Gd(III)-based MRI contrast agent. Inorg Chem 57:2631–8.
  • Qin J, Liu Q, Zhang J, et al. (2015). Rationally separating the corona and membrane functions of polymer vesicles for enhanced T2 MRI and drug delivery. ACS Appl Mater Interfaces 7:14043–52.
  • Robinson JT, Welsher K, Tabakman SM, et al. (2010). High performance in vivo near-IR (>1μm) imaging and photothermal cancer therapy with carbon nanotubes. Nano Res 3:779–93.
  • Shen S, Wang S, Zheng R, et al. (2015). Magnetic nanoparticle clusters for photothermal therapy with near-infrared irradiation. Biomaterials 39:67–74.
  • Tempany CM, Jayender J, Kapur T, et al. (2015). Multimodal imaging for improved diagnosis and treatment of cancers. Cancer 121:817–27.
  • Torre LA, Siegel RL, Ward EM, Jemal A. (2016). Global cancer incidence and mortality rates and trends-an update. Cancer Epidemiol Biomarkers Prev 25:16–27.
  • Vanneman M, Dranoff G. (2012). Combining immunotherapy and targeted therapies in cancer treatment. Nat Rev Cancer 12:237–51.
  • Yang H, Zhuang Y, Sun Y, et al. (2011). Targeted dual-contrast T1- and T2-weighted magnetic resonance imaging of tumors using multifunctional gadolinium-labeled superparamagnetic iron oxide nanoparticles. Biomaterials 32:4584–93.
  • You J, Zhang R, Zhang G, et al. (2012). Photothermal-chemotherapy with doxorubicin-loaded hollow gold nanospheres: a platform for near-infrared light-triggered drug release. J Control Release 158:319–28.
  • Zhou Z, Bai R, Munasinghe J, et al. (2017). T1-T2 dual-modal magnetic resonance imaging: from molecular basis to contrast agents. ACS Nano 11:5227–32.
  • Zhou Z, Sun Y, Shen J, et al. (2014). Iron/iron oxide core/shell nanoparticles for magnetic targeting MRI and near-infrared photothermal therapy. Biomaterials 35:7470–8.