2,843
Views
7
CrossRef citations to date
0
Altmetric
Research Article

The synergistic antitumor activity of 3-(2-nitrophenyl) propionic acid-paclitaxel nanoparticles (NPPA-PTX NPs) and anti-PD-L1 antibody inducing immunogenic cell death

, , , , , , , , , , , & show all
Pages 800-813 | Received 28 Feb 2021, Accepted 23 Mar 2021, Published online: 19 Apr 2021

References

  • Apetoh L, Ghiringhelli F, Tesniere A, et al. (2007). Toll-like receptor 4-dependent contribution of the immune system to anticancer chemotherapy and radiotherapy. Nat Med 13:1050–9.
  • Bellmunt J, de Wit R, Vaughn DJ, et al. (2017). Pembrolizumab as second-line therapy for advanced urothelial carcinoma. N Engl J Med 376:1015–26.
  • Bezu L, Gomes-da-Silva LC, Dewitte H, et al. (2015). Combinatorial strategies for the induction of immunogenic cell death. Front Immunol 6:187.
  • Chen DS, Mellman I. (2013). Oncology meets immunology: the cancer-immunity cycle. Immunity 39:1–10.
  • Couzin-Frankel J. (2013). Breakthrough of the year 2013. Cancer immunotherapy. Science 342:1432–3.
  • Danhier F. (2016). To exploit the tumor microenvironment: since the EPR effect fails in the clinic, what is the future of nanomedicine? J Control Release 244:108–21.
  • Duan X-C, Yao X, Zhang S, et al. (2019). Antitumor activity of the bioreductive prodrug 3-(2-nitrophenyl) propionic acid-paclitaxel nanoparticles (NPPA-PTX NPs) on MDA-MB-231 cells: in vitro and in vivo. Int J Nanomedicine 14:195–204.
  • Dunn GP, Bruce AT, Ikeda H, et al. (2002). Cancer immunoediting: from immunosurveillance to tumor escape. Nat Immunol 3:991–8.
  • Emens LA, Middleton G. (2015). The interplay of immunotherapy and chemotherapy: harnessing potential synergies. Cancer Immunol Res 3:436–43.
  • Feng B, Zhou F, Hou B, et al. (2018). Binary cooperative prodrug nanoparticles improve immunotherapy by synergistically modulating immune tumor microenvironment. Adv Mater 30:1803001.
  • Galluzzi L, Buqué A, Kepp O, et al. (2017). Immunogenic cell death in cancer and infectious disease. Nat Rev Immunol 17:97–111.
  • He B, Jia Z, Du W, et al. (2013). The transport pathways of polymer nanoparticles in MDCK epithelial cells. Biomaterials 34:4309–26.
  • Jewett A, Kos J, Kaur K, et al. (2020). Natural killer cells: diverse functions in tumor immunity and defects in pre-neoplastic and neoplastic stages of tumorigenesis. Mol Ther Oncolytics 16:41–52.
  • Karasaki T, Nagayama K, Kuwano H, et al. (2017). An immunogram for the cancer-immunity cycle: towards personalized immunotherapy of lung cancer. J Thorac Oncol 12:791–803.
  • Kepp O, Galluzzi L, Martins I, et al. (2011). Molecular determinants of immunogenic cell death elicited by anticancer chemotherapy. Cancer Metastasis Rev 30:61–9.
  • Kim J, Sestito LF, Im S, et al. (2020). Poly(cyclodextrin)-polydrug nanocomplexes as synthetic oncolytic virus for locoregional melanoma chemoimmunotherapy. Adv Funct Mater 30:1908788.
  • Krysko DV, Garg AD, Kaczmarek A, et al. (2012). Immunogenic cell death and DAMPs in cancer therapy. Nat Rev Cancer 12:860–75.
  • Lau TS, Chan LKY, Man GCW, et al. (2020). Paclitaxel induces immunogenic cell death in ovarian cancer via TLR4/IKK2/SNARE-dependent exocytosis. Cancer Immunol Res 8:1099–111.
  • Li C, Wang J, Wang Y, et al. (2019). Recent progress in drug delivery. Acta Pharm Sin B 9:1145–62.
  • Li J, Burgess DJ. (2020). Nanomedicine-based drug delivery towards tumor biological and immunological microenvironment. Acta Pharm Sin B 10:110–24.
  • Lin C-W, Jan M-S, Kuo J-HS. (2000). Drug targeting. Eur J Pharm Sci 11:S81–S91.
  • Martins I, Kepp O, Schlemmer F, et al. (2011). Restoration of the immunogenicity of cisplatin-induced cancer cell death by endoplasmic reticulum stress. Oncogene 30:1147–58.
  • Mathios D, Kim JE, Mangraviti A, et al. (2016). Anti-PD-1 antitumor immunity is enhanced by local and abrogated by systemic chemotherapy in GBM. Sci Transl Med 8:ra180.
  • Mei L, Liu Y, Rao J, et al. (2018). Enhanced tumor retention effect by click chemistry for improved cancer immunochemotherapy. ACS Appl Mater Interfaces 10:17582–93.
  • Meng Z, Lv Q, Lu J, et al. (2016). Prodrug strategies for paclitaxel. Int J Mol Sci 17:796.
  • Musetti S, Huang L. (2018). Nanoparticle-mediated remodeling of the tumor microenvironment to enhance immunotherapy. ACS Nano 12:11740–55.
  • Obeid M, Tesniere A, Ghiringhelli F, et al. (2007). Calreticulin exposure dictates the immunogenicity of cancer cell death. Nat Med 13:54–61.
  • Ogawara K-i, Un K, Minato K, et al. (2008). Determinants for in vivo anti-tumor effects of PEG liposomal doxorubicin: importance of vascular permeability within tumors. Int J Pharm 359:234–40.
  • Peng J, Hamanishi J, Matsumura N, et al. (2015). Chemotherapy induces programmed cell death-ligand 1 overexpression via the nuclear factor-κB to foster an immunosuppressive tumor microenvironment in ovarian cancer. Cancer Res 75:5034–45.
  • Peters S, Gettinger S, Johnson ML, et al. (2017). Phase II trial of atezolizumab as first-line or subsequent therapy for patients with programmed death-ligand 1–selected advanced non–small-cell lung cancer (BIRCH). J Clin Oncol 35:2781–9.
  • Powles T, Eder JP, Fine GD, et al. (2014). MPDL3280A (anti-PD-L1) treatment leads to clinical activity in metastatic bladder cancer. Nature 515:558–62.
  • Rittmeyer A, Barlesi F, Waterkamp D, et al. (2017). Atezolizumab versus docetaxel in patients with previously treated non-small-cell lung cancer (OAK): a phase 3, open-label, multicentre randomised controlled trial. Lancet 389:255–65.
  • Rizvi NA, Hellmann MD, Brahmer JR, et al. (2016). Nivolumab in combination with platinum-based doublet chemotherapy for first-line treatment of advanced non-small-cell lung cancer. J Clin Oncol 34:2969–79.
  • Schiavoni G, Sistigu A, Valentini M, et al. (2011). Cyclophosphamide synergizes with type I interferons through systemic dendritic cell reactivation and induction of immunogenic tumor apoptosis. Cancer Res 71:768–78.
  • Schmid P, Adams S, Rugo HS, et al. (2018). Atezolizumab and nab-paclitaxel in advanced triple-negative breast cancer. N Engl J Med 379:2108–21.
  • Sharma P, Allison JP. (2015). Immune checkpoint targeting in cancer therapy: toward combination strategies with curative potential. Cell 161:205–14.
  • Sims GP, Rowe DC, Rietdijk ST, et al. (2010). HMGB1 and RAGE in inflammation and cancer. Annu Rev Immunol 28:367–88.
  • Song P, Yao X, Zhong T, et al. (2016). The anti-tumor efficacy of 3-(2-Nitrophenyl) propionic acid-paclitaxel (NPPA-PTX): a novel paclitaxel bioreductive prodrug. Oncotarget 7:48467–80.
  • Su Z, Xiao Z, Wang Y, et al. (2020). Codelivery of anti-PD-1 antibody and paclitaxel with matrix metalloproteinase and pH dual-sensitive micelles for enhanced tumor chemoimmunotherapy. Small 16:1906832.
  • Sukkurwala AQ, Martins I, Wang Y, et al. (2014). Immunogenic calreticulin exposure occurs through a phylogenetically conserved stress pathway involving the chemokine CXCL8. Cell Death Differ 21:59–68.
  • Tesniere A, Schlemmer F, Boige V, et al. (2010). Immunogenic death of colon cancer cells treated with oxaliplatin. Oncogene 29:482–91.
  • Tu K, Deng H, Kong L, et al. (2020). Reshaping tumor immune microenvironment through acidity-responsive nanoparticles featured with CRISPR/Cas9-mediated programmed death-ligand 1 attenuation and chemotherapeutics-induced immunogenic cell death. ACS Appl Mater Interfaces 12:16018–30.
  • Vassileva V, Allen CJ, Piquette-Miller M. (2008). Effects of sustained and intermittent paclitaxel therapy on tumor repopulation in ovarian cancer. Mol Cancer Ther 7:630–37.
  • Vinay DS, Ryan EP, Pawelec G, et al. (2015). Immune evasion in cancer: mechanistic basis and therapeutic strategies. Semin Cancer Biol 35:S185–S98.
  • Wang C, Wang J, Zhang X, et al. (2018). In situ formed reactive oxygen species–responsive scaffold with gemcitabine and checkpoint inhibitor for combination therapy. Sci Transl Med 10:eaan3682.
  • Wang Q, Ju X, Wang J, et al. (2018). Immunogenic cell death in anticancer chemotherapy and its impact on clinical studies. Cancer Lett 438:17–23.
  • Wang Y, Gao D, Liu Y, et al. (2021). Immunogenic-cell-killing and immunosuppression-inhibiting nanomedicine. Bioact Mater 6:1513–27.
  • Weiss GJ, Waypa J, Blaydorn L, et al. (2017). A phase Ib study of pembrolizumab plus chemotherapy in patients with advanced cancer (PembroPlus). Br J Cancer 117:33–40.
  • Yang Q, Shi G, Chen X, et al. (2020). Nanomicelle protects the immune activation effects of paclitaxel and sensitizes tumors to anti-PD-1 immunotherapy. Theranostics 10:8382–99.
  • Yoshinari A, Hideaki I, Kazuhiko K. (2015). PD-1 blockade in tumors with mismatch-repair deficiency. N Engl J Med 373:1979.
  • Zhao J, Stenzel M. (2018). Entry of nanoparticles into cells: the importance of nanoparticle properties. Polym Chem 9:259–72.
  • Zhao Y, Song Q, Yin Y, et al. (2018). Immunochemotherapy mediated by thermosponge nanoparticles for synergistic anti-tumor effects. J Control Release 269:322–36.
  • Zhu L, Chen L. (2019). Progress in research on paclitaxel and tumor immunotherapy. Cell Mol Biol Lett 24:40.
  • Zitvogel L, Apetoh L, Ghiringhelli F, Kroemer G. (2008). Immunological aspects of cancer chemotherapy. Nat Rev Immunol 8:59–73.