1,746
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Facile synthesis of PEI-based crystalline templated mesoporous silica with molecular chirality for improved oral delivery of the poorly water-soluble drug

, , , , , , , & show all
Pages 894-905 | Received 21 Feb 2021, Accepted 30 Mar 2021, Published online: 07 May 2021

References

  • Ahmed N, Näsman P, Wahlgren NG. (2000). Effect of intravenous nimodipine on blood pressure and outcome after acute stroke. Stroke 31:1250–5.
  • Benoit DSW, Nuttelman CR, Collins SD, Anseth KS. (2006). Synthesis and characterization of a fluvastatin-releasing hydrogel delivery system to modulate hmsc differentiation and function for bone regeneration. Biomaterials 27:6102–10.
  • Che S, Liu Z, Ohsuna T, et al. (2004). Synthesis and characterization of chiral mesoporous silica. Nature 429:281–4.
  • Chen XQ, Ziemba T, Huang C, et al. (2018). Oral delivery of highly lipophilic poorly water-soluble drugs: self-emulsifying drug delivery systems (SEDDS) to improve oral absorption and enable high dose toxicology studies of a CETP inhibitor in preclinical species. J Pharm Sci 107:1352–60.
  • Chiappetta DA, Sosnik A. (2007). Poly(ethylene oxide)-poly(propylene oxide) block copolymer micelles as drug delivery agents: improved hydrosolubility, stability and bioavailability of drugs. Eur J Pharm Biopharm 66:303–17.
  • David JH. (2007). Oral lipid-based formulations. Adv Drug Del Rev 59:667–76.
  • Dement'eva OV, Naumova KA, Zhigletsova SK, et al. (2020). Drug-templated mesoporous silica nanocontainers with extra high payload and controlled release rate. Colloids Surf B Biointerfaces 185:110577.
  • Elshaer A, Khan S, Perumal D, et al. (2011). Use of amino acids as counterions improves the solubility of the BCS II model drug, indomethacin. Curr Drug Deliv 8:363–72.
  • Fu Q, Kou LF, Gong C, et al. (2012). Relationship between dissolution and bioavailability for nimodipine colloidal dispersions: the critical size in improving bioavailability. Int J Pharm 427:358–64.
  • Gou K, Wang Y, Xie L, et al. (2020a). Synthesis, structural properties, biosafety and applications of chiral mesoporous silica nanostructures. Chem Eng J 127862.
  • Guo Y, Wu L, Gou K, et al. (2020b). Functional mesoporous silica nanoparticles for delivering nimesulide with chiral recognition performance. Micropor Mesopor Mater 294:109862.
  • Hancock BC, Zografi G. (1997). Characteristics and significance of the amorphous state in pharmaceutical systems. J Pharm Sci 86:1–12.
  • Horcajada P, Rámila A, Pérez-Pariente J, Vallet-Regı́ M. (2004). Influence of pore size of MCM-41 matrices on drug delivery rate. Micropor Mesopor Mater 68:105–9.
  • Hu Y, Zhi Z, Zhao Q, et al. (2012). 3D cubic mesoporous silica microsphere as a carrier for poorly soluble drug carvedilol. Micropor Mesopor Mater 147:94–101.
  • Izquierdo-Barba I, Sousa E, Doadrio JC, et al. (2009). Influence of mesoporous structure type on the controlled delivery of drugs: release of ibuprofen from MCM-48, SBA-15 and functionalized SBA-15. J Sol-Gel Sci Technol 50:421–9.
  • Jesus RA, Rabelo AS, Figueiredo RT, et al. (2016). Synthesis and application of the MCM-41 and SBA-15 as matrices for in vitro efavirenz release study. J Drug Del Sci Tech 31:153–9.
  • Jin H, Liu Z, Ohsuna T, et al. (2006). Control of morphology and helicity of chiral mesoporous silica. Adv Mater 18:593–6.
  • Jin RH, Yuan JJ. (2005). Simple synthesis of hierarchically structured silicas by poly(ethyleneimine) aggregates pre-organized by media modulation macromol. Macromol Chem Phys 206:2160–70.
  • Jung S, Song R, Kim J, et al. (2020). Controlling the release of amphiphilic liposomes from alginate hydrogel particles for antifouling paint. Langmuir 36:1515–22.
  • Junyaprasert VB, Morakul B. (2015). Nanocrystals for enhancement of oral bioavailability of poorly water-soluble drugs. Asian J Pharm Sci 10:13–23.
  • Karki N, Tiwari H, Pal M, et al. (2018). Functionalized graphene oxides for drug loading, release and delivery of poorly water soluble anticancer drug: a comparative study. Colloids Surf B Biointerfaces 169:265–72.
  • Knapik-Kowalczuk J, Tu W, Chmiel K, et al. (2018). Co-stabilization of amorphous pharmaceuticals-the case of nifedipine and nimodipine. Mol Pharm 15:2455–65.
  • Li HR, Ke J, Li H, et al. (2018). Mesoporous silicas templated by heterocyclic amino acid derivatives: biomimetic synthesis and drug release application. Mat Sci Eng C 93:407–18.
  • Li J, Xu L, Liu H, et al. (2014). Biomimetic synthesized nanoporous silica@poly(ethyleneimine)s xerogel as drug carrier: characteristics and controlled release effect. Int J Pharm 467:9–18.
  • Li J, Xu L, Nan Z, et al. (2016). Biomimetic synthesized bimodal nanoporous silica: bimodal mesostructure formation and application for ibuprofen delivery. Mater Sci Eng C Mater Biol Appl 58:1105–11.
  • Li X, Han J, Qin J, et al. (2019). Mesoporous silica nanobeans dual-functionalized with aiegens and leaning pillar[6]arene-based supramolecular switches for imaging and stimuli-responsive drug release. Chem Commun (Camb) 55:14099–102.
  • Lindberg NO, Lundstedt T. (1994). The relationship between the dissolution rate and the particle size of prednimustine: a disagreement with the noyes-whitney equation. Drug Dev Ind Pharm 20:2547–50.
  • Liu W, Wang X, Chen R, et al. (2016). Effect of age on the pharmacokinetics of polymorphic nimodipine in rats after oral administration. Acta Pharm Sin B 6:468–74.
  • Martin A, Cocero MJ. (2008). Micronization processes with supercritical fluids: fundamentals and mechanisms. Adv Drug Deliv Rev 60:339–50.
  • Matsukizono H, Jin RH. (2012). High-temperature-resistant chiral silica generated on chiral crystalline templates at neutral pH and ambient conditions. Angew Chem Int Ed Engl 51:5862–5.
  • Mazzotta E, Tavano L, Muzzalupo R. (2018). Thermo-sensitive vesicles in controlled drug delivery for chemotherapy. Pharmaceutics 10:150.
  • Morgado P, Barras J, Filipe EJM. (2020). Solubility of water in perfluoroalkylalkanes surfactants: evidence of specific interaction between water and the surfactant molecule. Fluid Phase Equilibr 522:112754.
  • Mrówczyński R, Artur J, Kosma S, et al. (2018). Cyclodextrin-based magnetic nanoparticles for cancer therapy. Nanomaterials 8:170.
  • Park C, Meghani N, Shin Y, et al. (2019). Investigation of crystallization and salt formation of poorly water-soluble telmisartan for enhanced solubility. Pharmaceutics 11:102.
  • Perez RA, Singh RK, Kim TH, Kim HW. (2017). Silica-based multifunctional nanodelivery systems toward regenerative medicine. Mater Horiz 4:772–99.
  • Phuong T, Chu PY, Hyunm KD, et al. (2019). Overview of the manufacturing methods of solid dispersion technology for improving the solubility of poorly water-soluble drugs and application to anticancer drugs. Pharmaceutics 11:132.
  • Pickard JD, Murray GD, Illingworth R, et al. (1989). Effect of oral nimodipine on cerebral infarction and outcome after subarachnoid haemorrhage: british aneurysm nimodipine trial. BMJ 298:636–42.
  • Ramachandraiah K, Choi MJ, Hong GP. (2018). Micro- and nano-scaled materials for strategy-based applications in innovative livestock products: a review. Trends Food Sci Tech 71:25–35.
  • Ren XT, Qi JP, Wu W, et al. (2019). Development of carrier-free nanocrystals of poorly water-soluble drugs by exploring metastable zone of nucleation. Acta Pharm Sin B 9:118–27.
  • Serajuddin ATM. (2007). Salt formation to improve drug solubility. Adv Drug Deliv Rev 59:603–16.
  • Singh A, Worku ZA, Guy VDM. (2011). Oral formulation strategies to improve solubility of poorly water-soluble drugs. Expert Opin Drug Deliv 8:1361–78.
  • Slowing I, Trewyn B, Giri S, Lin Y. (2007). Mesoporous silica nanoparticles for drug delivery and biosensing applications. Adv Funct Mater 17:1225–36.
  • Wang F, Jiang F, Li Y, et al. (2012). Formation of new biosilica-like structures by flow-induced forces. RSC Adv 2:5738–47.
  • Wang Y, Li W, Liu T, et al. (2019). Design and preparation of mesoporous silica carriers with chiral structures for drug release differentiation. Mater Sci Eng C Mater Biol Appl 103:109737.
  • Wang Y, Sun L, Jiang T, et al. (2014). The investigation of MCM-48-type and MCM-41-type mesoporous silica as oral solid dispersion carriers for water insoluble cilostazol. Drug Dev Ind Pharm 40:819–28.
  • Wang Y, Zhao Q, Han N, et al. (2015). Mesoporous silica nanoparticles in drug delivery and biomedical applications. Nanomedicine 11:313–27.
  • Wu L, Gou K, Guo X, et al. (2021). Dual response to pH and chiral microenvironments for the release of a flurbiprofen-loaded chiral self-assembled mesoporous silica drug delivery system. Colloid Surface B 199:11150.
  • Zhang Q, Li Y, Bao Y, et al. (2018). Pretreatment with nimodipine reduces incidence of POCD by decreasing calcineurin mediated hippocampal neuroapoptosis in aged rats. BMC Anesthesiol 18:42.
  • Zhang XW, Xing HJ, Zhao Y, Ma ZG. (2018). Pharmaceutical dispersion techniques for dissolution and bioavailability enhancement of poorly water-soluble drugs. Pharmaceutics 10:74–106.
  • Zhang Y, Zhao Q, Zhu W, et al. (2015). Synthesis and evaluation of mesoporous carbon/lipid bilayer nanocomposites for improved oral delivery of the poorly water-soluble drug, nimodipine. Pharm Res 32: 2372–83.
  • Zhou J, Wang M, Han Y, et al. (2020). Multistage-targeted gold/mesoporous silica nanocomposite hydrogel as in situ injectable drug release system for chemophotothermal synergistic cancer therapy. ACS Appl Bio Mater 3:421–31.
  • Zhou Y, Quan G, Wu Q, Zhang X, et al. (2018). Mesoporous silica nanoparticles for drug and gene delivery. Acta Pharma Sin B 8:165–77.