2,152
Views
6
CrossRef citations to date
0
Altmetric
Research Article

Targeting of the COX-2/PGE2 axis enhances the antitumor activity of T7 peptide in vitro and in vivo

, , , , , , , , , , , , & show all
Pages 844-855 | Received 17 Feb 2021, Accepted 06 Apr 2021, Published online: 30 Apr 2021

References

  • Apte RS, Chen DS, Ferrara N. (2019). VEGF in signaling and disease: beyond discovery and development. Cell 176:1248–64.
  • Boosani CS, Mannam AP, Cosgrove D, et al. (2007). Regulation of COX-2 mediated signaling by alpha3 type IV noncollagenous domain in tumor angiogenesis. Blood 110:1168–77.
  • Boosani CS, Varma AK, Sudhakar A. (2010). Validation of different systems for tumstatin expression and its in-vitro and in-vivo activities. J Cancer Sci Ther 2009:8–18.
  • Borza CM, Pozzi A, Borza DB, et al. (2006). Integrin alpha3beta1, a novel receptor for alpha3(IV) noncollagenous domain and a trans-dominant inhibitor for integrin alphavbeta3. J Biol Chem 281:20932–9.
  • Cao J, Li J, Sun L, et al. (2019). Hypoxia-driven paracrine osteopontin/integrin αvβ3 signaling promotes pancreatic cancer cell epithelial–mesenchymal transition and cancer stem cell-like properties by modulating forkhead box protein M1. Mol Oncol 13:228–45.
  • Dong X, Li R, Xiu P, et al. (2014). Meloxicam executes its antitumor effects against hepatocellular carcinoma in COX-2-dependent and -independent pathways. PLoS One 9:e92864.
  • Dong XF, Liu TQ, Zhi XT, et al. (2018). COX-2/PGE2 axis regulates HIF2α activity to promote hepatocellular carcinoma hypoxic response and reduce the sensitivity of sorafenib treatment. Clin Cancer Res 24:3204–16.
  • Esipov R, Beyrakhova K, Likhvantseva V, et al. (2012). Antiangiogenic and antivascular effects of a recombinant tumstatin-derived peptide in a corneal neovascularization model. Biochimie 94:1368–75.
  • Fernando NT, Koch M, Rothrock C, et al. (2008). Tumor escape from endogenous, extracellular matrix-associated angiogenesis inhibitors by up-regulation of multiple proangiogenic factors. Clin Cancer Res 14:1529–39.
  • Fields GB. (2019). Mechanisms of action of novel drugs targeting angiogenesis-promoting matrix metalloproteinases. Front Immunol 10:1278.
  • Folkman J. (1971). Tumor angiogenesis: therapeutic implications. N Engl J Med 285:1182–6.
  • Grizzi F, Chiriva-Internati M, Yiu D. (2020). On the assessment of angiogenesis: it is time to change (go further) from an estimate to a measurement. Folia Morphol (Warsz) 79:188–9.
  • Hamano Y, Zeisberg M, Sugimoto H, et al. (2003). Physiological levels of tumstatin, a fragment of collagen IV alpha3 chain, are generated by MMP-9 proteolysis and suppress angiogenesis via alphaV beta3 integrin. Cancer Cell 3:589–601.
  • Ji Q, Wang YL, Xia LM, et al. (2019). High shear stress suppresses proliferation and migration but promotes apoptosis of endothelial cells co-cultured with vascular smooth muscle cells via down-regulating MAPK pathway. J Cardiothorac Surg 14:216.
  • Lee HJ, Diaz MF, Price KM, et al. (2017). Fluid shear stress activates YAP1 to promote cancer cell motility. Nat Commun 8:14122.
  • Liang Y, Zheng T, Song R, et al. (2013). Hypoxia-mediated sorafenib resistance can be overcome by EF24 through Von Hippel–Lindau tumor suppressor-dependent HIF-1α inhibition in hepatocellular carcinoma. Hepatology 57:1847–57.
  • Liu F, Wang F, Dong X, et al. (2019). T7 peptide cytotoxicity in human hepatocellular carcinoma cells is mediated by suppression of autophagy. Int J Mol Med 44:523–34.
  • Liu L, Zhang H, Sun L, et al. (2010). ERK/MAPK activation involves hypoxia-induced MGr1-Ag/37LRP expression and contributes to apoptosis resistance in gastric cancer. Int J Cancer 127:820–9.
  • Mashreghi M, Azarpara H, Bazaz MR, et al. (2018). Angiogenesis biomarkers and their targeting ligands as potential targets for tumor angiogenesis. J Cell Physiol 233:2949–65.
  • Morse MA, Sun W, Kim R, et al. (2019). The role of angiogenesis in hepatocellular carcinoma. Clin Cancer Res 25:912–20.
  • Munir S, Shah AA, Shahid M, et al. (2020). Anti-angiogenesis potential of phytochemicals for the therapeutic management of tumors. Curr Pharm Des 26:265–78.
  • Muz B, Buggio M, Azab F, et al. (2019). PYK2/FAK inhibitors reverse hypoxia-induced drug resistance in multiple myeloma. Haematologica 104:e310–3.
  • Najafi M, Farhood B, Mortezaee K, et al. (2020). Hypoxia in solid tumors: a key promoter of cancer stem cell (CSC) resistance. J Cancer Res Clin Oncol 146:19–31.
  • Petrou P. (2018). A systematic review of economic evaluations of tyrosine kinase inhibitors of vascular endothelial growth factor receptors, mammalian target of rapamycin inhibitors and programmed death-1 inhibitors in metastatic renal cell cancer. Expert Rev Pharmacoecon Outcomes Res 18:255–65.
  • Phung CD, Tran TH, Pham LM, et al. (2020). Current developments in nanotechnology for improved cancer treatment, focusing on tumor hypoxia. J Control Release 324:413–29.
  • Ricard-Blum S, Vallet SD. (2019). Fragments generated upon extracellular matrix remodeling: biological regulators and potential drugs. Matrix Biol 75–76:170–89.
  • Sokeland G, Schumacher U. (2019). The functional role of integrins during intra- and extravasation within the metastatic cascade. Mol Cancer 18:12.
  • Sormendi S, Wielockx B. (2018). Hypoxia pathway proteins as central mediators of metabolism in the tumor cells and their microenvironment. Front Immunol 9:40.
  • Sudhakar A, Boosani CS. (2008). Inhibition of tumor angiogenesis by tumstatin: insights into signaling mechanisms and implications in cancer regression. Pharm Res 25:2731–9.
  • Tong D, Liu Q, Wang LA, et al. (2018). The roles of the COX2/PGE2/EP axis in therapeutic resistance. Cancer Metastasis Rev 37:355–68.
  • Tu J, Fang Y, Han D, et al. (2021). Activation of nuclear factor-kappaB in the angiogenesis of glioma: insights into the associated molecular mechanisms and targeted therapies. Cell Prolif 54:e12929.
  • Wagenblast E, Soto M, Gutierrez-Angel S, et al. (2015). A model of breast cancer heterogeneity reveals vascular mimicry as a driver of metastasis. Nature 520:358–62.
  • Wang F, Dong X, Xiu P, et al. (2015). T7 peptide inhibits angiogenesis via downregulation of angiopoietin-2 and autophagy. Oncol Rep 33:675–84.
  • Wang Q, Lu D, Fan L, et al. (2019). COX-2 induces apoptosis-resistance in hepatocellular carcinoma cells via the HIF-1alpha/PKM2 pathway. Int J Mol Med 43:475–88.
  • Wang Z, Wu X. (2020). Study and analysis of antitumor resistance mechanism of PD1/PD-L1 immune checkpoint blocker. Cancer Med 9:8086–121.
  • Wang W, Xu CX, Hou GS, et al. (2013). Downregulation of tumstatin expression by overexpression of ornithine decarboxylase. Oncol Rep 30:2042–8.
  • Wang J, Zhou P, Wang X, et al. (2019). Rab25 promotes erlotinib resistance by activating the β1 integrin/AKT/β-catenin pathway in NSCLC. Cell Prolif 52:e12592.
  • Wong PP, Munoz-Felix JM, Hijazi M, et al. (2020). Cancer burden is controlled by mural cell-β3-integrin regulated crosstalk with tumor cells. Cell 181:1346–63.e21.
  • Wu D, Potluri N, Lu J, et al. (2015). Structural integration in hypoxia-inducible factors. Nature 524:303–8.
  • Xiu P, Dong X, Dong X, et al. (2013). Secretory clusterin contributes to oxaliplatin resistance by activating Akt pathway in hepatocellular carcinoma. Cancer Sci 104:375–82.
  • Zhao L, Wu Y, Xu Z, et al. (2012). Involvement of COX-2/PGE2 signalling in hypoxia-induced angiogenic response in endothelial cells. J Cell Mol Med 16:1840–55.
  • Zhong J, Dong X, Xiu P, et al. (2015). Blocking autophagy enhances meloxicam lethality to hepatocellular carcinoma by promotion of endoplasmic reticulum stress. Cell Prolif 48:691–704.
  • Zhou Y, Dong X, Xiu P, et al. (2020). Meloxicam, a selective COX-2 inhibitor, mediates hypoxia-inducible factor- (HIF-) 1α signaling in hepatocellular carcinoma. Oxid Med Cell Longev 2020:7079308.