2,843
Views
15
CrossRef citations to date
0
Altmetric
Research Article

Enhancing the in vitro and in vivo activity of itraconazole against breast cancer using miltefosine-modified lipid nanocapsules

, , , &
Pages 906-919 | Received 22 Feb 2021, Accepted 12 Apr 2021, Published online: 07 May 2021

References

  • Abdel-Mottaleb MM, Neumann D, Lamprecht A. (2010). In vitro drug release mechanism from lipid nanocapsules (LNC). Int J Pharm 390:208–13.
  • Abedin MR, Barua S. (2021). Isolation and purification of glycoglycerolipids to induce apoptosis in breast cancer cells. Sci Rep 11:1298.
  • Aftab BT, Dobromilskaya I, Liu JO, Rudin CM. (2011). Itraconazole inhibits angiogenesis and tumor growth in non-small cell lung cancer. Cancer Res 71:6764–72.
  • Aghebati-Maleki A, Dolati S, Ahmadi M, et al. (2020). Nanoparticles and cancer therapy: perspectives for application of nanoparticles in the treatment of cancers. J Cell Physiol 235:1962–72.
  • Alhakamy NA, Md S. (2019). Repurposing itraconazole loaded PLGA nanoparticles for improved antitumor efficacy in non-small cell lung cancers. Pharmaceutics 11:685.
  • Alonso L, Cardoso EJS, Mendanha SA, Alonso A. (2019). Interactions of miltefosine with erythrocyte membrane proteins compared to those of ionic surfactants. Colloids Surf B Biointerfaces 180:23–30.
  • Arndt D, Zeisig R, Eue I, et al. (1997). Antineoplastic activity of sterically stabilized alkylphosphocholine liposomes in human breast carcinomas. Breast Cancer Res Treat 43:237–46.
  • Ballot S, Noiret N, Hindré F, et al. (2006). 99mTc/188Re-labelled lipid nanocapsules as promising radiotracers for imaging and therapy: formulation and biodistribution. Eur J Nucl Med Mol Imaging 33:602–7.
  • Carbone C, Martins-Gomes C, Pepe V, et al. (2018). Repurposing itraconazole to the benefit of skin cancer treatment: a combined azole-DDAB nanoencapsulation strategy. Colloids Surf B Biointerfaces 167:337–44.
  • Choi YK, Poudel BK, Marasini N, et al. (2012). Enhanced solubility and oral bioavailability of itraconazole by combining membrane emulsification and spray drying technique. Int J Pharm 434:264–71.
  • Correia A, Silva D, Correia A, et al. (2018). Study of new therapeutic strategies to combat breast cancer using drug combinations. Biomolecules 8:175.
  • Danaei M, Dehghankhold M, Ataei S, et al. (2018). Impact of particle size and polydispersity index on the clinical applications of lipidic nanocarrier systems. Pharmaceutics 10:57.
  • De Abreu Costa L, Henrique Fernandes Ottoni M, Dos Santos MG, et al. (2017). Dimethyl sulfoxide (DMSO) decreases cell proliferation and TNF-α, IFN-γ, and IL-2 cytokines production in cultures of peripheral blood lymphocytes. Molecules 22:1789.
  • Deng H, Huang L, Liao Z, et al. (2020). Itraconazole inhibits the Hedgehog signaling pathway thereby inducing autophagy-mediated apoptosis of colon cancer cells. Cell Death Dis 11:539.
  • Dorlo TPC, Eggelte TA, De Vries PJ, Beijnen JH. (2012). Characterization and identification of suspected counterfeit miltefosine capsules. Analyst 137:1265–74.
  • Dowsett M, Nielsen TO, A'Hern R, et al. (2011). Assessment of Ki67 in breast cancer: recommendations from the International Ki67 in Breast Cancer Working Group. J Natl Cancer Inst 103:1656–64.
  • Eissa MM, El-Azzouni MZ, El-Khordagui LK, et al. (2020b). Single oral fixed-dose praziquantel-miltefosine nanocombination for effective control of experimental Schistosomiasis mansoni. Parasit Vectors 13:474.
  • Eissa MM, El-Moslemany RM, Ramadan AA, et al. (2015). Miltefosine lipid nanocapsules for single dose oral treatment of Schistosomiasis mansoni: a preclinical study. PLoS One 10:e0141788.
  • El-Lakany SA, Elgindy NA, Helmy MW, et al. (2018). Lactoferrin-decorated vs PEGylated zein nanospheres for combined aromatase inhibitor and herbal therapy of breast cancer. Expert Opin Drug Deliv 15:835–50.
  • El-Sheridy NA, Ramadan AA, Eid AA, El-Khordagui LK. (2019). Itraconazole lipid nanocapsules gel for dermatological applications: in vitro characteristics and treatment of induced cutaneous candidiasis. Colloids Surf B Biointerfaces 181:623–31.
  • El Sayed I, Helmy MW, El-Abhar HS. (2018). Inhibition of SRC/FAK cue: a novel pathway for the synergistic effect of rosuvastatin on the anti-cancer effect of dasatinib in hepatocellular carcinoma. Life Sci 213:248–57.
  • Elmeliegy M, Lang I, Smolyarchuk EA, et al. (2020). Evaluation of the effect of P-glycoprotein inhibition and induction on talazoparib disposition in patients with advanced solid tumours. Br J Clin Pharmacol 86:771–8.
  • Elzoghby AO, Mostafa SK, Helmy MW, et al. (2017). Multi-reservoir phospholipid shell encapsulating protamine nanocapsules for co-delivery of letrozole and celecoxib in breast cancer therapy. Pharm Res 34:1956–69.
  • Farid RM, Gaafar PME, Hazzah HA, et al. (2020). Chemotherapeutic potential of l-carnosine from stimuli-responsive magnetic nanoparticles against breast cancer model. Nanomedicine (Lond) 15:891–911.
  • Feng D, Peng T, Huang Z, et al. (2018). Polymer–surfactant system based amorphous solid dispersion: precipitation inhibition and bioavailability enhancement of itraconazole. Pharmaceutics 10:53.
  • Fourniols T, Bastien E, Canevat A, et al. (2020). Inhibition of colorectal cancer-associated fibroblasts by lipid nanocapsules loaded with acriflavine or paclitaxel. Int J Pharm 584:119337.
  • Garcion E, Lamprecht A, Heurtault B, et al. (2006). A new generation of anticancer, drug-loaded, colloidal vectors reverses multidrug resistance in glioma and reduces tumor progression in rats. Mol Cancer Ther 5:1710–22.
  • Hanigan MH, Lykissa ED, Townsend DM, et al. (2001). γ-Glutamyl transpeptidase-deficient mice are resistant to the nephrotoxic effects of cisplatin. Am J Pathol 159:1889–94.
  • Heurtault B, Saulnier P, Pech B, et al. (2002). A novel phase inversion-based process for the preparation of lipid nanocarriers. Pharm Res 19:875–80.
  • Hirsjarvi S, Sancey L, Dufort S, et al. (2013). Effect of particle size on the biodistribution of lipid nanocapsules: comparison between nuclear and fluorescence imaging and counting. Int J Pharm 453:594–600.
  • Houšť J, Spížek J, Havlíček V. (2020). Antifungal drugs. Metabolites 10:106.
  • Huynh NT, Morille M, Bejaud J, et al. (2011). Treatment of 9L gliosarcoma in rats by ferrociphenol-loaded lipid nanocapsules based on a passive targeting strategy via the EPR effect. Pharm Res 28:3189–98.
  • Huynh NT, Passirani C, Saulnier P, Benoit JP. (2009). Lipid nanocapsules: a new platform for nanomedicine. Int J Pharm 379:201–9.
  • Kaleağasıoğlu F, Ali DM, Berger MR. (2020). Multiple facets of autophagy and the emerging role of alkylphosphocholines as autophagy modulators. Front Pharmacol 11:547.
  • Kaleağasıoğlu F, Zaharieva MM, Konstantinov SM, Berger MR. (2019). Alkylphospholipids are signal transduction modulators with potential for anticancer therapy. Anticancer Agents Med Chem 19:66–91.
  • Karim R, Lepeltier E, Esnault L, et al. (2018). Enhanced and preferential internalization of lipid nanocapsules into human glioblastoma cells: effect of a surface-functionalizing NFL peptide. Nanoscale 10:13485–501.
  • Kim J, Tang JY, Gong R, et al. (2010). Itraconazole, a commonly used antifungal that inhibits Hedgehog pathway activity and cancer growth. Cancer Cell 17:388–99.
  • Li K, Fang D, Xiong Z, Luo R. (2019). Inhibition of the Hedgehog pathway for the treatment of cancer using Itraconazole. Onco Targets Ther 12:6875–86.
  • Lin Y, He X, Zhou D, et al. (2018). Co-delivery of doxorubicin and itraconazole by Pluronic® P123 coated liposomes to enhance the anticancer effect in breast cancers. RSC Adv 8:23768–79.
  • Lollo G, Matha K, Bocchiardo M, et al. (2019). Drug delivery to tumours using a novel 5-FU derivative encapsulated into lipid nanocapsules. J Drug Target 27:634–45.
  • Morille M, Montier T, Legras P, et al. (2010). Long-circulating DNA lipid nanocapsules as new vector for passive tumor targeting. Biomaterials 31:321–9.
  • Mouzouvi CRA, Umerska A, Bigot AK, Saulnier P. (2017). Surface active properties of lipid nanocapsules. PLoS One 12:e0179211.
  • Okeke CI, Eltahan AS, Zhang T, et al. (2017). Co-delivery of itraconazole and docetaxel by core/shell lipid nanocells for systemic antiangiogenesis and tumor growth inhibition. J Biomed Nanotechnol 13:1398–412.
  • Ozaslan M, Karagoz ID, Kilic IH, Guldur ME. (2011). Ehrlich ascites carcinoma. Afr J Biotechnol 10:2375–8.
  • Puig-Rigall J, Fernandez-Rubio C, Gonzalez-Benito J, et al. (2020). Structural characterization by scattering and spectroscopic methods and biological evaluation of polymeric micelles of poloxamines and TPGS as nanocarriers for miltefosine delivery. Int J Pharm 578:119057.
  • Rashidi M, Seghatoleslam A, Namavari M, et al. (2017). Selective cytotoxicity and apoptosis-induction of Cyrtopodion scabrum extract against digestive cancer cell lines. Int J Cancer Manag 10:e8633.
  • Resnier P, Galopin N, Sibiril Y, et al. (2017). Efficient ferrocifen anticancer drug and Bcl-2 gene therapy using lipid nanocapsules on human melanoma xenograft in mouse. Pharmacol Res 126:54–65.
  • Roger E, Lagarce F, Benoit JP. (2011). Development and characterization of a novel lipid nanocapsule formulation of Sn38 for oral administration. Eur J Pharm Biopharm 79:181–8.
  • Rybczynska M, Spitaler M, Knebel NG, et al. (2001). Effects of miltefosine on various biochemical parameters in a panel of tumor cell lines with different sensitivities. Biochem Pharmacol 62:765–72.
  • Saad EA, Hassanien MM, El-Mezayen HA, Elmenawy NM. (2017). Regression of murine Ehrlich ascites carcinoma using synthesized cobalt complex. Med Chem Commun 8:1103–11.
  • Saman H, Raza SS, Uddin S, Rasul K. (2020). Inducing angiogenesis, a key step in cancer vascularization, and treatment approaches. Cancers 12:1172.
  • Sami MM, Ali EA, Galhom RA, et al. (2019). Boswellic acids ameliorate doxorubicin-induced nephrotoxicity in mice: a focus on antioxidant and antiapoptotic effects. Egypt J Basic Appl Sci 6:10–24.
  • Sawasaki M, Tsubamoto H, Nakamoto Y, et al. (2020). S-1, oxaliplatin, Nab-paclitaxel and itraconazole for conversion surgery for advanced or recurrent gastric cancer. Anticancer Res 40:991–7.
  • Shim JS, Li RJ, Bumpus NN, et al. (2016). Divergence of antiangiogenic activity and hepatotoxicity of different stereoisomers of itraconazole. Clin Cancer Res 22:2709–20.
  • Somchit N, Norshahida AR, Hasiah AH, et al. (2004). Hepatotoxicity induced by antifungal drugs itraconazole and fluconazole in rats: a comparative in vivo study. Hum Exp Toxicol 23:519–25.
  • Szwed M, Torgersen ML, Kumari RV, et al. (2020). Biological response and cytotoxicity induced by lipid nanocapsules. J Nanobiotechnol 18:5.
  • Tsubamoto H, Ueda T, Inoue K, et al. (2017). Repurposing itraconazole as an anticancer agent. Oncol Lett 14:1240–6.
  • Uzunova V, Tzoneva R, Stoyanova T, et al. (2019). Dimethylsphingosine and miltefosine induce apoptosis in lung adenocarcinoma A549 cells in a synergistic manner. Chem Biol Interact 310:108731.
  • Van Blitterswijk WJ, Verheij M. (2013). Anticancer mechanisms and clinical application of alkylphospholipids. Biochim Biophys Acta 1831:663–74.
  • Verheij M, Ruiter G, Zerp S, et al. (2001). Alkyl-lysophospholipids enhance radiation-induced cytotoxicity and inhibit angiogenesis in vitro. Int J Radiat Oncol Biol Phys 51:155.
  • Wang B, Yu T, Hu Y, et al. (2017a). Prognostic role of Gli1 expression in breast cancer: a meta-analysis. Oncotarget 8:81088.
  • Wang X, Wei S, Zhao Y, et al. (2017b). Anti-proliferation of breast cancer cells with itraconazole: Hedgehog pathway inhibition induces apoptosis and autophagic cell death. Cancer Lett 385:128–36.
  • Wang Y, Yao Y, Liu H, et al. (2015). Itraconazole can inhibit malignant pleural effusion by suppressing lymphangiogenesis in mice. Transl Lung Cancer Res 4:27–35.
  • Wei X, Liu W, Wang JQ, Tang Z. (2020). "Hedgehog pathway": a potential target of itraconazole in the treatment of cancer. J Cancer Res Clin Oncol 146:297–304.
  • Xie H, Paradise BD, Ma WW, Fernandez-Zapico ME. (2019). Recent advances in the clinical targeting of Hedgehog/GLI signaling in cancer. Cells 8:394.
  • Xin Y, Shen X-d, Cheng L, et al. (2014). Perifosine inhibits S6K1–Gli1 signaling and enhances gemcitabine-induced anti-pancreatic cancer efficiency. Cancer Chemother Pharmacol 73:711–9.
  • Yi Q, Ma J, Kang K, Gu Z. (2018). Bioreducible nanocapsules for folic acid-assisted targeting and effective tumor-specific chemotherapy. Int J Nanomedicine 13:653–67.
  • Yosifov DY, Kaloyanov KA, Guenova ML, et al. (2014). Alkylphosphocholines and curcumin induce programmed cell death in cutaneous T-cell lymphoma cell lines. Leuk Res 38:49–56.
  • Zhang L, Liu Z, Kong C, et al. (2018). Improving drug delivery of micellar paclitaxel against non-small cell lung cancer by coloading itraconazole as a micelle stabilizer and a tumor vascular manipulator. Small 14:e1802112.
  • Zhang Y, Huo M, Zhou J, et al. (2010). DDSolver: an add-in program for modeling and comparison of drug dissolution profiles. AAPS J 12:263–71.
  • Zhou Z, Luo B, Liu X, et al. (2019). Flavonoid-alkylphospholipid conjugates elicit dual inhibition of cancer cell growth and lipid accumulation. Chem Commun 55:8919–22.
  • Zulueta Diaz YLM, Ambroggio EE, Fanani ML. (2020). Miltefosine inhibits the membrane remodeling caused by phospholipase action by changing membrane physical properties. Biochim Biophys Acta Biomembr 1862:183407.