2,127
Views
6
CrossRef citations to date
0
Altmetric
Research Article

Experimental study on preparation and anti-tumor efficiency of nanoparticles targeting M2 macrophages

, , , , , , , , , , , & show all
Pages 943-956 | Received 08 Mar 2021, Accepted 20 Apr 2021, Published online: 14 May 2021

References

  • Ali I, Lone MN, Aboul-Enein HY. (2017). Imidazoles as potential anticancer agents. Medchemcomm 8:1742–73.
  • Aras S, Zaidi MR. (2017). TAMeless traitors: macrophages in cancer progression and metastasis. Br J Cancer 117:1583–91.
  • Barrueto L, Caminero F, Cash L, et al. (2020). Resistance to checkpoint inhibition in cancer immunotherapy. Transl Oncol 13:100738.
  • Brown HK, Holen I. (2009). Anti-tumour effects of bisphosphonates—what have we learned from in vivo models. Curr Cancer Drug Targets 9:807–23.
  • de Leoz ML, Young LJ, An HJ, et al. (2011). High-mannose glycans are elevated during breast cancer progression. Mol Cell Proteomics 10:79–84.
  • Diebold SS, Plank C, Cotten M, et al. (2002). Mannose receptor-mediated gene delivery into antigen presenting dendritic cells. Somat Cell Mol Genet 27:65–74.
  • Emens LA. (2010). Chemoimmunotherapy. Cancer J 16:295–303.
  • Fasol U, Frost A, Büchert M, et al. (2012). Vascular and pharmacokinetic effects of EndoTAG-1 in patients with advanced cancer and liver metastasis. Ann Oncol 23:1030–6.
  • Feng Y, Santoriello C, Mione M, et al. (2010). Correction: live imaging of innate immune cell sensing of transformed cells in zebrafish larvae: parallels between tumor initiation and wound inflammation. PLoS Biol 8:e1002377.
  • Galdiero MR, Bonavita E, Barajon I, et al. (2013). Tumor associated macrophages and neutrophils in cancer. Immunobiology 218:1402–10.
  • Gan J, Liu C, Li H, et al. (2019). Accelerated wound healing in diabetes by reprogramming the macrophages with particle-induced clustering of the mannose receptors. Biomaterials 219:119340.
  • Garon EB, Hellmann MD, Rizvi NA, et al. (2019). Five-year overall survival for patients with advanced non-small-cell lung cancer treated with pembrolizumab: results from the Phase I KEYNOTE-001 study. J Clin Oncol 37:2518–27.
  • Glass EB, Masjedi S, Dudzinski SO, et al. (2019). Optimizing mannose "Click" conjugation to polymeric nanoparticles for targeted siRNA delivery to human and murine macrophages. ACS Omega 4:16756–67.
  • Gu W, Miao TT, Wang SF, et al. (2015). Synthesis crystal structure and antitumor activity of a new 3H-phenanthro-[2,1-d]imidazole derivative of dehydroabietic acid. Chin J Struct Chem 34:1440–5.
  • Guerrouahen BS, Maccalli C, Cugno C, et al. (2019). Reverting immune suppression to enhance cancer immunotherapy. Front Oncol 9:1554.
  • Hu C, Lei T, Wang Y, et al. (2020). Phagocyte-membrane-coated and laser-responsive nanoparticles control primary and metastatic cancer by inducing anti-tumor immunity. Biomaterials 255:120159.
  • Jayasingam SD, Citartan M, Thang TH, et al. (2019). Evaluating the polarization of tumor-associated macrophages into M1 and M2 phenotypes in human cancer tissue: technicalities and challenges in routine clinical practice. Front Oncol 9:1512.
  • Kawakami S, Sato A, Nishikawa M, et al. (2000). Mannose receptor-mediated gene transfer into macrophages using novel mannosylated cationic liposomes. Gene Ther 7:292–9.
  • Klingen TA, Chen Y, Aas H, et al. (2017). Tumor-associated macrophages are strongly related to vascular invasion, non-luminal subtypes, and interval breast cancer. Hum Pathol 69:72–80.
  • Kwon S, Ko H, You DG, et al. (2019). Nanomedicines for reactive oxygen species mediated approach: an emerging paradigm for cancer treatment. Acc Chem Res 52:1771–82.
  • Lawrence T, Natoli G. (2011). Transcriptional regulation of macrophage polarization: enabling diversity with identity. Nat Rev Immunol 11:750–61.
  • Leifler KS, Svensson S, Abrahamsson A, et al. (2013). Inflammation induced by MMP-9 enhances tumor regression of experimental breast cancer. J Immunol 190:4420–30.
  • Lewis CE, Pollard JW. (2006). Distinct role of macrophages in different tumor microenvironments. Cancer Res 66:605–12.
  • Li W, Zhang X, Wu F, et al. (2019). Gastric cancer-derived mesenchymal stromal cells trigger M2 macrophage polarization that promotes metastasis and EMT in gastric cancer. Cell Death Dis 10:918.
  • Lin Y, Xu J, Lan H. (2019). Tumor-associated macrophages in tumor metastasis: biological roles and clinical therapeutic applications. J Hematol Oncol 12:76.
  • Maruyama K. (2011). Intracellular targeting delivery of liposomal drugs to solid tumors based on EPR effects. Adv Drug Deliv Rev 63:161–9.
  • Mascaux C, Angelova M, Vasaturo A, et al. (2019). Immune evasion before tumour invasion in early lung squamous carcinogenesis. Nature 571:570–5.
  • Mitragotri S, Lahann J. (2009). Physical approaches to biomaterial design. Nat Mater 8:15–23.
  • Movahedi K, Schoonooghe S, Laoui D, et al. (2012). Nanobody-based targeting of the macrophage mannose receptor for effective in vivo imaging of tumor-associated macrophages. Cancer Res 72:4165–77.
  • Odegaard JI, Ricardo-Gonzalez RR, Goforth MH, et al. (2007). Macrophage-specific PPARgamma controls alternative activation and improves insulin resistance. Nature 447:1116–20.
  • Park SH. (2019). Ethyl acetate fraction of Adenophora triphylla var. japonica inhibits migration of Lewis lung carcinoma cells by suppressing macrophage polarization toward an M2 phenotype. J Pharmacopuncture 22:253–9.
  • Solinas G, Marchesi F, Garlanda C, et al. (2010). Inflammation-mediated promotion of invasion and metastasis. Cancer Metastasis Rev 29:243–8.
  • Stephen B, Hajjar J. (2020). Overview of basic immunology and clinical application. Adv Exp Med Biol 1244:1–36.
  • [USP] USP XXII NF XVII [S]. (1990). United States Pharmacopeial Convention, Inc., Rockville, 2069.
  • van Dalen FJ, van Stevendaal MHME, Fennemann FL, et al. (2018). Molecular repolarisation of tumour-associated macrophages. Molecules 24:9.
  • Vats D, Mukundan L, Odegaard JI, et al. (2006). Oxidative metabolism and PGC-1beta attenuate macrophage-mediated inflammation. Cell Metab 4:13–24.
  • Welford AF, Biziato D, Coffelt SB, et al. (2011). TIE2-expressing macrophages limit the therapeutic efficacy of the vascular-disrupting agent combretastatin A4 phosphate in mice. J Clin Invest 121:1969–73.
  • Wynn TA, Chawla A, Pollard JW. (2013). Macrophage biology in development, homeostasis and disease. Nature 496:445–55.
  • Xia P, Zhang F, Yuan Y, et al. (2020). ALDH 2 conferred neuroprotection on cerebral ischemic injury by alleviating mitochondria-related apoptosis through JNK/caspase-3 signing pathway. Int J Biol Sci 16:1303–23.
  • Yeeprae W, Kawakami S, Yamashita F, et al. (2006). Effect of mannose density on mannose receptor-mediated cellular uptake of mannosylated O/W emulsions by macrophages. J Control Release 114:193–201.
  • Youn YS, Bae YH. (2018). Perspectives on the past, present, and future of cancer nanomedicine. Adv Drug Deliv Rev 130:3–11.
  • Zhang Z, Zhang J, He P, et al. (2020). Interleukin-37 suppresses hepatocellular carcinoma growth through inhibiting M2 polarization of tumor-associated macrophages. Mol Immunol 122:13–20.
  • Zheng T, Ma G, Tang M, et al. (2018). IL-8 secreted from M2 macrophages promoted prostate tumorigenesis via STAT3/MALAT1 pathway. Int J Mol Sci 20:98.
  • Zhou Y, Chen X, Cao J, et al. (2020). Overcoming the biological barriers in the tumor microenvironment for improving drug delivery and efficacy. J Mater Chem B 8:6765–81.
  • Zins K, Abraham D. (2020). Cancer immunotherapy: targeting tumor-associated macrophages by gene silencing. Methods Mol Biol 2115:289–325.