2,578
Views
5
CrossRef citations to date
0
Altmetric
Research Article

Synergistic effect of the anti-PD-1 antibody with blood stable and reduction sensitive curcumin micelles on colon cancer

, ORCID Icon, , ORCID Icon, ORCID Icon, , ORCID Icon & ORCID Icon show all
Pages 930-942 | Received 08 Mar 2021, Accepted 20 Apr 2021, Published online: 11 May 2021

References

  • Aggarwal BB, Harikumar KB. (2009). Potential therapeutic effects of curcumin, the anti-inflammatory agent, against neurodegenerative, cardiovascular, pulmonary, metabolic, autoimmune and neoplastic diseases. Int J Biochem Cell Biol 41:40–59.
  • Alsaab HO, Sau S, Alzhrani R, et al. (2017). PD-1 and PD-L1 checkpoint signaling inhibition for cancer immunotherapy: mechanism, combinations, and clinical outcome. Front Pharmacol 8:561.
  • Anand P, Kunnumakkara AB, Newman RA, et al. (2007). Bioavailability of curcumin: problems and promises. Mol Pharm 4:807–18.
  • Basnet P, Skalko-Basnet N. (2011). Curcumin: an anti-inflammatory molecule from a curry spice on the path to cancer treatment. Molecules 16:4567–98.
  • Bhattacharyya S, Mandal D, Saha B, et al. (2007). Curcumin prevents tumor-induced T cell apoptosis through STAT-5a-mediated Bcl-2 induction. J Biol Chem 282:15954–64.
  • Binion DG, Otterson MF, Rafiee P. (2008). Curcumin inhibits VEGF-mediated angiogenesis in human intestinal microvascular endothelial cells through COX-2 and MAPK inhibition. Gut 57:1509–17.
  • Cao Y, Gao M, Chen C, et al. (2015). Triggered-release polymeric conjugate micelles for on-demand intracellular drug delivery. Nanotechnology 26:115101.
  • Chang YF, Chuang HY, Hsu CH, et al. (2012). Immunomodulation of curcumin on adoptive therapy with T cell functional imaging in mice. Cancer Prev Res (Phila) 5:444–52.
  • Chen H, Kim S, He W, et al. (2008). Fast release of lipophilic agents from circulating PEG-PDLLA micelles revealed by in vivo forster resonance energy transfer imaging. Langmuir 24:5213–7.
  • Cheng AL, Hsu CH, Lin JK, et al. (2001). Phase I clinical trial of curcumin, a chemopreventive agent, in patients with high-risk or pre-malignant lesions. Anticancer Res 21:2895–900.
  • Dhillon N, Aggarwal BB, Newman RA, et al. (2008). Phase II trial of curcumin in patients with advanced pancreatic cancer. Clin Cancer Res 14:4491–9.
  • Dobrovoiskaia MA, Clogston JD, Neun BW, et al. (2008). Method for analysis of nanoparticle hemolytic properties in vitro. Nano Lett 8:2180–7.
  • Fan YJ, Chen GP, Tanaka J, et al. (2005). l-Phe end-capped poly(l-lactide) as macroinitiator for the synthesis of poly(l-lactide)-b-poly(l-lysine) block copolymer. Biomacromolecules 6:3051–6.
  • Finney DJ. (1952). Probit analysis. J Inst Actuaries 78:388–90.
  • Ganta S, Amiji M. (2009). Coadministration of paclitaxel and curcumin in nanoemulsion formulations to overcome multidrug resistance in tumor cells. Mol Pharm 6:928–39.
  • Garcea G, Jones DJ, Singh R, et al. (2004). Detection of curcumin and its metabolites in hepatic tissue and portal blood of patients following oral administration. Br J Cancer 90:1011–5.
  • Gillies ER, Frechet JM. (2002). Designing macromolecules for therapeutic applications: polyester dendrimer-poly(ethylene oxide) "bow-tie" hybrids with tunable molecular weight and architecture. J Am Chem Soc 124:14137–46.
  • Gong FR, Chen D, Teng X, et al. (2017). Curcumin-loaded blood-stable polymeric micelles for enhancing therapeutic effect on erythroleukemia. Mol Pharm 14:2585–94.
  • Gotsche M, Keul H, Hocker H. (1995). Amino-termined poly(l-lactide)s as initiators for the polymerization of n-carboxyanhydrides – synthesis of poly(l-Lactide)-block-poly(alpha-amino acid)s. Macromol Chem Phys 196:3891–903.
  • Hsiao PC, Chang JH, Lee WJ, et al. (2020). The curcumin analogue, EF-24, triggers p38 MAPK-mediated apoptotic cell death via inducing PP2A-modulated ERK deactivation in human acute myeloid leukemia cells. Cancers (Basel) 12:2163.
  • Hu CM, Zhang L. (2012). Nanoparticle-based combination therapy toward overcoming drug resistance in cancer. Biochem Pharmacol 83:1104–11.
  • Huang RY, Pei L, Liu Q, et al. (2019). Isobologram analysis: a comprehensive review of methodology and current research. Front Pharmacol 10:1222.
  • Kanai M, Yoshimura K, Asada M, et al. (2011). A phase I/II study of gemcitabine-based chemotherapy plus curcumin for patients with gemcitabine-resistant pancreatic cancer. Cancer Chemother Pharmacol 68:157–64.
  • Khafif A, Schantz SP, Chou TC, et al. (1998). Quantitation of chemopreventive synergism between (–)-epigallocatechin-3-gallate and curcumin in normal, premalignant and malignant human oral epithelial cells. Carcinogenesis 19:419–24.
  • Koo AN, Lee HJ, Kim SE, et al. (2008). Disulfide-cross-linked PEG-poly(amino acid)s copolymer micelles for glutathione-mediated intracellular drug delivery. Chem Commun 6570–2.
  • Letchford K, Burt HM. (2012). Copolymer micelles and nanospheres with different in vitro stability demonstrate similar paclitaxel pharmacokinetics. Mol Pharm 9:248–60.
  • Li YP, Xiao K, Luo JT, et al. (2011). Well-defined, reversible disulfide cross-linked micelles for on-demand paclitaxel delivery. Biomaterials 32:6633–45.
  • Lu Y, Miao L, Wang Y, et al. (2016). Curcumin micelles remodel tumor microenvironment and enhance vaccine activity in an advanced melanoma model. Mol Ther 24:364–74.
  • Meng X, Gao M, Deng J, et al. (2018). Self-immolative micellar drug delivery: the linker matters. Nano Res 11:6177–89.
  • Meng FH, Hennink WE, Zhong Z. (2009). Reduction-sensitive polymers and bioconjugates for biomedical applications. Biomaterials 30:2180–98.
  • Nelson KM, Dahlin JL, Bisson J, et al. (2017). The essential medicinal chemistry of curcumin. J Med Chem 60:1620–37.
  • Noda K, Oda M, Sato M, et al. (1990). A facile method for preparation of tert-butyloxycarbonylamino acid para-nitroanilides. Int J Pept Protein Res 36:197–200.
  • Philips GK, Atkins M. (2015). Therapeutic uses of anti-PD-1 and anti-PD-L1 antibodies. Int Immunol 27:39–46.
  • Robert C, Soria JC, Eggermont AM. (2013). Drug of the year: programmed death-1 receptor/programmed death-1 ligand-1 receptor monoclonal antibodies. Eur J Cancer 49:2968–71.
  • Savic R, Azzam T, Eisenberg A, et al. (2006). Assessment of the integrity of poly(caprolactone)-b-poly(ethylene oxide) micelles under biological conditions: a fluorogenic-based approach. Langmuir 22:3570–8.
  • Sharma RA, Gescher AJ, Steward WP. (2005). Curcumin: the story so far. Eur J Cancer 41:1955–68.
  • Tang XQ, Bi H, Feng JQ, et al. (2005). Effect of curcumin on multidrug resistance in resistant human gastric carcinoma cell line SGC7901/VCR. Acta Pharmacol Sin 26:1009–16.
  • Tu SP, Jin H, Shi JD, et al. (2012). Curcumin induces the differentiation of myeloid-derived suppressor cells and inhibits their interaction with cancer cells and related tumor growth. Cancer Prev Res (Phila) 5:205–15.
  • Verma SP, Salamone E, Goldin B. (1997). Curcumin and genistein, plant natural products, show synergistic inhibitory effects on the growth of human breast cancer MCF-7 cells induced by estrogenic pesticides. Biochem Biophys Res Commun 233:692–6.
  • Wang X, Li J, Yan Q, et al. (2018). In situ probing intracellular drug release from redox-responsive micelles by united FRET and AIE. Macromol Biosci 18:1700339.
  • Weir NM, Selvendiran K, Kutala VK, et al. (2007). Curcumin induces G2/M arrest and apoptosis in cisplatin-resistant human ovarian cancer cells by modulating Akt and p38 MAPK. Cancer Biol Ther 6:178–84.
  • Yallapu MM, Khan S, Maher DM, et al. (2014). Anti-cancer activity of curcumin loaded nanoparticles in prostate cancer. Biomaterials 35:8635–48.
  • Zhao GJ, Lu ZQ, Tang LM, et al. (2012). Curcumin inhibits suppressive capacity of naturally occurring CD4+ CD25+ regulatory T cells in mice in vitro. Int Immunopharmacol 14:99–106.