1,950
Views
10
CrossRef citations to date
0
Altmetric
Research Article

Prodrug-based nano-delivery strategy to improve the antitumor ability of carboplatin in vivo and in vitro

ORCID Icon, , , , &
Pages 1272-1280 | Received 15 Apr 2021, Accepted 31 May 2021, Published online: 26 Jun 2021

References

  • Alex AT, Joseph A, Shavi G, et al. (2016). Development and evaluation of carboplatin-loaded PCL nanoparticles for intranasal delivery. Drug Deliv 23:2144–53.
  • Arduino I, Depalo N, Re F, et al. (2020). PEGylated solid lipid nanoparticles for brain delivery of lipophilic kiteplatin Pt(IV) prodrugs: an in vitro study. Int J Pharm 583:119351.
  • Barnes KR, Kutikov A, Lippard SJ, et al. (2004). Synthesis, characterization, and cytotoxicity of a series of estrogen-tethered platinum(IV) complexes. Chem Biol 11:557–64.
  • Butler JS, Sadler PJ. (2013). Targeted delivery of platinum-based anticancer complexes. Curr Opin Chem Biol 17:175–88.
  • Carvalho P, Lopes IC, Silva E, et al. (2019). Electrochemical behaviour of anticancer drug lomustine and in situ evaluation of its interaction with DNA. Pharm Biomed Anal 176:112786.
  • Chapman RW, Corboz MR, Malinin VS, et al. (2020). An overview of the biology of a long-acting inhaled treprostinil prodrug. Pulm Pharmacol Ther 65:102002.
  • Chen Y, Wang Q, Li Z, et al. (2020). Naproxen platinum(IV) hybrids inhibiting cycloxygenases and matrix metalloproteinases and causing DNA damage: synthesis and biological evaluation as antitumor agents in vitro and in vivo. Dalton Trans 49:5192–204.
  • Cheng Q, Liu YJ. (2016). Multifunctional platinum‐based nanoparticles for biomedical applications. Wiley Interdiscip Rev Nanomed Nanobiotechnol 9.
  • Creighton RL, Suydam IT, Ebner ME, et al. (2019). Sustained intracellular raltegravir depots generated with prodrugs designed for nanoparticle delivery. ACS Biomater Sci Eng 5:4013–22.
  • Dey J, Ghosh R, Das Mahapatra R. (2019). Self-assembly of unconventional low-molecular-mass amphiphiles containing a PEG chain. Langmuir 35:848–61.
  • Dhar S, Kolishetti N, Lippard SJ, et al. (2011). Targeted delivery of a cisplatin prodrug for safer and more effective prostate cancer therapy in vivo. Proc Natl Acad Sci U S A 108:1850–5.
  • Duan X, Chen H, Fan L, et al. (2016). Drug self-assembled delivery system with dual responsiveness for cancer chemotherapy. ACS Biomater Sci Eng 2:2347–54.
  • Feazell RP, Nakayama-Ratchford N, Dai H, et al. (2007). Soluble single-walled carbon nanotubes as longboat delivery systems for platinum(IV) anticancer drug design. Am Chem Soc 129:8438–9.
  • Graf N, Lippard SJ. (2012). Redox activation of metal-based prodrugs as a strategy for drug delivery. Adv Drug Deliv Rev 64:993–1004.
  • Gu J, Huang Y, Yan Z, et al. (2020). Biomimetic membrane-structured nanovesicles carrying a supramolecular enzyme to cure lung cancer. ACS Appl Mater Interfaces 12:31112–23.
  • Gu Y, Ma J, Fu Z, et al. (2019). Development of novel liposome-encapsulated combretastatin A4 acylated derivatives: prodrug approach for improving antitumor efficacy. Int J Nanomedicine 14:8805–18.
  • Heikkinen EM, Ruponen M, Jasper LM, et al. (2020). Prodrug approach for posterior eye drug delivery: synthesis of novel ganciclovir prodrugs and in vitro screening with cassette dosing. Mol Pharm 17:1945–53.
  • Herrera DA, Ashai N, Perez-Soler R, et al. (2018). Nanoparticle albumin bound-paclitaxel for treatment of advanced non-small cell lung cancer: an evaluation of the clinical evidence. Expert Opin Pharmacother 2:95–102.
  • Huang H, Jiang CT, Shen S, et al. (2019). Nanoenabled reversal of IDO1-mediated immunosuppression synergizes with immunogenic chemotherapy for improved cancer therapy. Nano Lett 19:5356–65.
  • Huang J, Wang L, Lin R, et al. (2013). Casein-coated iron oxide nanoparticles for high MRI contrast enhancement and efficient cell targeting. ACS Appl Mater Interfaces 5:4632–9.
  • Ita KB. (2016). Prodrugs for transdermal drug delivery – trends and challenges. J Drug Target 24:671–8.
  • Jiang S, Pan AW, Lin TY, et al. (2015). Paclitaxel enhances carboplatin-DNA adduct formation and cytotoxicity. Chem Res Toxicol 28:2250–2.
  • Kumar A, Huo S, Zhang X, et al. (2014). Neuropilin-1-targeted gold nanoparticles enhance therapeutic efficacy of platinum(IV) drug for prostate cancer treatment. ACS Nano 8:4205–20.
  • Li D, Song Y, He J, et al. (2019). Polymer–doxorubicin prodrug with biocompatibility, pH response, and main chain breakability prepared by catalyst-free click reaction. ACS Biomater Sci Eng 5:2307–15.
  • Li J, Yap S, Chin C, et al. (2012). Platinum(IV) prodrugs entrapped within multiwalled carbon nanotubes: selective release by chemical reduction and hydrophobicity reversal. Chem Sci 3:2083.
  • Li X, Liu Y, Tian H. (2018). Current developments in Pt(IV) prodrugs conjugated with bioactive ligands. Bioinorg Chem Appl 2018:1–18.
  • Li Z, Tan S, Li S, et al. (2017). Cancer drug delivery in the nano era: an overview and perspectives (review). Oncol Rep 38:611–24.
  • Li ZY, Liu Y, Wang XQ, et al. (2013). One-pot construction of functional mesoporous silica nanoparticles for the tumor-acidity-activated synergistic chemotherapy of glioblastoma. ACS Appl Mater Interfaces 5:7995–8001.
  • Lim WQ, Yang G, Phua SZ, et al. (2019). Self-assembled oxaliplatin(IV) prodrug–porphyrin conjugate for combinational photodynamic therapy and chemotherapy. ACS Appl Mater Interfaces 11:16391–401.
  • Liu Y, Bhattarai P, Dai Z, et al. (2019). Photothermal therapy and photoacoustic imaging via nanotheranostics in fighting cancer. Chem Soc Rev 48:2053–108.
  • Liu Y, Tian H, Xu L, et al. (2019). Investigations of the kinetics and mechanism of reduction of a carboplatin Pt(IV) prodrug by the major small-molecule reductants in human plasma. Int J Mol Sci 20:5660.
  • Luo C, Sun J, Liu D, et al. (2016). Self-assembled redox dual-responsive prodrug-nanosystem formed by single thioether-bridged paclitaxel-fatty acid conjugate for cancer chemotherapy. Nano Lett 16:5401–8.
  • Ma P, Xiao H, Yu C, et al. (2017). Enhanced cisplatin chemotherapy by iron oxide nanocarrier-mediated generation of highly toxic reactive oxygen species. Nano Lett 17:928–37.
  • Mangal S, Gao W, Li T, et al. (2017). Pulmonary delivery of nanoparticle chemotherapy for the treatment of lung cancers: challenges and opportunities. Acta Pharmacol Sin 38:782–97.
  • Min Y, Mao C, Xu D, et al. (2010). Gold nanorods for platinum based prodrug delivery. Chem Commun 46:8424–6.
  • Moloney JN, Cotter TG. (2018). ROS signalling in the biology of cancer. Semin Cell Dev Biol 80:50–64.
  • Nakamura Y, Mochida A, Choyke PL, et al. (2016). Nanodrug delivery: is the enhanced permeability and retention effect sufficient for curing cancer? Bioconjug Chem 27:2225–38.
  • Poon C, Duan X, Chan C, et al. (2016). Nanoscale coordination polymers codeliver carboplatin and gemcitabine for highly effective treatment of platinum-resistant ovarian cancer. Mol Pharm 13:3665–75.
  • Ren X, Wang N, Zhou Y, et al. (2021). An injectable hydrogel using an immunomodulating gelator for amplified tumor immunotherapy by blocking the arginase pathway. Acta Biomater 124:179–90.
  • Rieter WJ, Pott KM, Taylor K, et al. (2008). Nanoscale coordination polymers for platinum-based anticancer drug delivery. Am Chem Soc 130:11584–5.
  • Rossi A, Di Maio M. (2016). Platinum-based chemotherapy in advanced non-small-cell lung cancer: optimal number of treatment cycles. Expert Rev Anticancer Ther 16:653–60.
  • Srinivas US, Tan BW, Vellayappan BA, et al. (2019). ROS and the DNA damage response in cancer. Redox Biol 25:101084.
  • Thapa P, Li M, Karki R, et al. (2017). Folate–PEG conjugates of a far-red light-activatable paclitaxel prodrug to improve selectivity toward folate receptor-positive cancer cells. ACS Omega 2:6349–60.
  • Tian H, Zhang M, Jin G, et al. (2021). Cu-MOF chemodynamic nanoplatform via modulating glutathione and H2O2 in tumor microenvironment for amplified cancer therapy. J Colloid Interface Sci 587:358–66.
  • Wang J, Liu G. (2018). Imaging nano–bio interactions in the kidney: toward a better understanding of nanoparticle clearance. Angew Chem Int Ed Engl 57:3008–10.
  • Wang K, Yang B, Ye H, et al. (2019). Self-strengthened oxidation-responsive bioactivating prodrug nanosystem with sequential and synergistically facilitated drug release for treatment of breast cancer. ACS Appl Mater Interfaces 11:18914–22.
  • Wang L, Huang J, Chen H, et al. (2017). Exerting enhanced permeability and retention effect driven delivery by ultrafine iron oxide nanoparticles with T(1)–T(2) switchable magnetic resonance imaging contrast. ACS Nano 11:4582–92.
  • Wang S, Zhang H, Malfatti M, et al. (2010). Gemcitabine causes minimal modulation of carboplatin-DNA monoadduct formation and repair in bladder cancer cells. Chem Res Toxicol 23:1653–5.
  • Wang T, Wang D, Liu J, et al. (2017). Acidity-triggered ligand-presenting nanoparticles to overcome sequential drug delivery barriers to tumors. Nano Lett 17:5429–36.
  • Wexselblatt E, Gibson D. (2012). What do we know about the reduction of Pt(IV) pro-drugs? Inorg Biochem 117:220–9.
  • Wicki A, Witzigmann D, Balasubramanian V, et al. (2015). Nanomedicine in cancer therapy: challenges, opportunities, and clinical applications. J Control Release 200:138–57.
  • Yang C, Tu K, Gao H, et al. (2020). The novel platinum(IV) prodrug with self-assembly property and structure-transformable character against triple-negative breast cancer. Biomaterials 232:119751.
  • Yu C, Wang Z, Sun Z, et al. (2020). Platinum-based combination therapy: molecular rationale, current clinical uses, and future perspectives. J Med Chem 63:13397–412.
  • Yu Y, Wu Y, Liu J, et al. (2016). Ultrasmall dopamine-coated nanogolds: preparation, characteristics, and CT imaging. Exp Nanosci 11:S1–S11.
  • Zhang C, Jin S, Li S, et al. (2014). Imaging intracellular anticancer drug delivery by self-assembly micelles with aggregation-induced emission (AIE micelles). ACS Appl Mater Interfaces 6:5212–20.
  • Zhang J, Wang N, Li Q, et al. (2021). A two-pronged photodynamic nanodrug to prevent metastasis of basal-like breast cancer. Chem Commun 57:2305–8.
  • Zhang L, Qian M, Cui H, et al. (2021). Spatiotemporal concurrent liberation of cytotoxins from dual-prodrug nanomedicine for synergistic antitumor therapy. ACS Appl Mater Interfaces 13:6053–68.
  • Zhang W, Shen J, Su H, et al. (2016). Co-delivery of cisplatin prodrug and chlorin e6 by mesoporous silica nanoparticles for chemo-photodynamic combination therapy to combat drug resistance. ACS Appl Mater Interfaces 8:13332–40.
  • Zhang WJ, Hong CY, Pan CY. (2016). Fabrication of reductive-responsive prodrug nanoparticles with superior structural stability by polymerization-induced self-assembly and functional nanoscopic platform for drug delivery. Biomacromolecules 17:2992–9.
  • Zhao J, Diaz-Dussan D, Jiang Z, et al. (2020). Facile preparation of macromolecular prodrugs for hypoxia-specific chemotherapy. ACS Macro Lett 9:1687–92.
  • Zhao Z, Lou S, Hu Y, et al. (2017). A nano-in-nano polymer-dendrimer nanoparticle-based nanosystem for controlled multidrug delivery. Mol Pharm 14:2697–710.
  • Zheng YR, Suntharalingam K, Johnstone TC, et al. (2014). Pt(IV) prodrugs designed to bind non-covalently to human serum albumin for drug delivery. J Am Chem Soc 136:8790–8.
  • Zhu S, Ma L, Wang S, et al. (2014). Light-scattering detection below the level of single fluorescent molecules for high-resolution characterization of functional nanoparticles. ACS Nano 8:10998–1006.