18,903
Views
169
CrossRef citations to date
0
Altmetric
Research Article

PLGA-based biodegradable microspheres in drug delivery: recent advances in research and application

, , , , ORCID Icon, , & ORCID Icon show all
Pages 1397-1418 | Received 16 Apr 2021, Accepted 31 May 2021, Published online: 29 Jun 2021

References

  • Alange VV, Birajdar RP, Kulkarni RV. (2017). Functionally modified polyacrylamide-graft-gum karaya pH-sensitive spray dried microspheres for colon targeting of an anti-cancer drug. Int J Biol Macromol 102:829–39.
  • Amjadi I, Rabiee M, Hosseini MS, et al. (2012). Synthesis and characterization of doxorubicin-loaded poly(lactide-co-glycolide) nanoparticles as a sustained-release anticancer drug delivery system. Appl Biochem Biotechnol 168:1434–47.
  • Arranz-Romera A, Davis BM, Bravo-Osuna I, et al. (2019). Simultaneous co-delivery of neuroprotective drugs from multi-loaded PLGA microspheres for the treatment of glaucoma. J Control Release 297:26–38.
  • Asfour MH. (2021). Advanced trends in protein and peptide drug delivery: a special emphasis on aquasomes and microneedles techniques. Drug Deliv Transl Res 11:1–23.
  • Atuah KN, Walter E, Merkle HP, Alpar HO. (2003). Encapsulation of plasmid DNA in PLGA-stearylamine microspheres: a comparison of solvent evaporation and spray-drying methods. J Microencapsul 20:387–99.
  • Aydin NE. (2020). Effect of temperature on drug release: production of 5-FU-encapsulated hydroxyapatite-gelatin polymer composites via spray drying and analysis of in vitro kinetics. Inter J Polymer Sci 2020:1–13.
  • Ayyanaar S, Kesavan MP, Sivaraman G, et al. (2019). Reactive oxygen species (ROS)-responsive microspheres for targeted drug delivery of camptothecin. J Drug Delivery Sci Technol 52:722–9.
  • Bai J, Chen W-B, Zhang X-Y, et al. (2020). HIF-2α regulates CD44 to promote cancer stem cell activation in triple-negative breast cancer via PI3K/AKT/mTOR signaling. WJSC 12:87–99.
  • Bee S-L, Hamid ZAA, Mariatti M, et al. (2018). Approaches to improve therapeutic efficacy of biodegradable PLA/PLGA microspheres: a review. Polym Rev 58:495–536.
  • Bowey K, Neufeld RJ. (2010). Systemic and mucosal delivery of drugs within polymeric microparticles produced by spray drying. BioDrugs 24:359–77.
  • Bravo-Osuna I, Andrés-Guerrero V, Arranz-Romera A, et al. (2018). Microspheres as intraocular therapeutical tools in chronic diseases of the optic nerve and retina. Adv Drug Delivery Rev 126:127–44.
  • Brzeziński M, Socka M, Kost B. (2019). Microfluidics for producing polylactide nanoparticles and microparticles and their drug delivery application. Polym Int 68:997–1014.
  • Caballero Aguilar LM, Duchi S, Onofrillo C, et al. (2021). Formation of alginate microspheres prepared by optimized microfluidics parameters for high encapsulation of bioactive molecules. J Colloid Interface Sci 587:240–51.
  • Cai Q, Qiao C, Ning J, et al. (2019). A polysaccharide-based hydrogel and PLGA microspheres for austained P24 peptide delivery: an in vitro and in vivo study based on osteogenic capability. Chem Res Chin Univ 35:908–15.
  • Calegari F, da Silva BC, Tedim J, et al. (2020). Benzotriazole encapsulation in spray-dried carboxymethylcellulose microspheres for active corrosion protection of carbon steel. Prog Org Coat 138:105329.
  • Calzoni E, Cesaretti A, Polchi A, et al. (2019). Biocompatible polymer nanoparticles for drug delivery applications in cancer and neurodegenerative disorder therapies. JFB 10:4.
  • Campana AL, Sotelo DC, Oliva HA, et al. (2020). Fabrication and characterization of a low-cost microfluidic system for the manufacture of alginate-lacasse microcapsules. Polymers (Basel 12:1158.
  • Cao SJ, Xu S, Wang HM, et al. (2019). Nanoparticles: oral delivery for protein and peptide Drugs. AAPS PharmSciTech 20:190
  • Chakraborty A, Royce SG, Plebanski M, Selomulya C. (2019). Glycine microparticles loaded with functionalized nanoparticles for pulmonary delivery. Int J Pharm 570:118654
  • Chauhan R, Balgemann R, Greb C, et al. (2019). Production of dasatinib encapsulated spray-dried poly (lactic-co-glycolic acid) particles. J Drug Delivery Sci Technol 53:101204.
  • Chen C, Dong J, Chen H, et al. (2019). Preparation of adriamycin gelatin microsphere-loaded decellularized periosteum that is cytotoxic to human osteosarcoma cells. J Cell Physiol 234:10771–81.
  • Chen L, Ahmed AMQ, Deng Y, et al. (2019). Novel triptorelin acetate-loaded microspheres prepared by a liquid/oil/oil method with high encapsulation efficiency and low initial burst release. J Drug Delivery Sci Technol 54:101390.
  • Cheng C-Y, Pho Q-H, Wu X-Y, et al. (2018). PLGA microspheres loaded with β-Cyclodextrin complexes of Epigallocatechin-3-Gallate for the anti-inflammatory properties in activated microglial cells. Polymers 10:519.
  • Cirri M, Maestrelli F, Scuota S, et al. (2021). Development and microbiological evaluation of chitosan and chitosan-alginate microspheres for vaginal administration of metronidazole. Int J Pharm 598:120375
  • Cook RO, Pannu RK, Kellaway IW. (2005). Novel sustained release microspheres for pulmonary drug delivery. J Control Release 104:79–90.
  • Dang Y, Guan J. (2020). Nanoparticle-based drug delivery systems for cancer therapy. Smart Materials in Medicine 1:10–9.
  • Deshmukh R, Wagh P, Naik J. (2016). Solvent evaporation and spray drying technique for micro- and nanospheres/particles preparation: A review. Drying Technol 34:1758–72.
  • Dominguez-de-la-Cruz E, Munoz ML, Perez-Munoz A, et al. (2020). Reduced mitochondrial DNA copy number is associated with the haplogroup, and some clinical features of breast cancer in Mexican patients. Gene 761:145047.
  • Duncanson WJ, Lin T, Abate AR, et al. (2012). Microfluidic synthesis of advanced microparticles for encapsulation and controlled release. Lab Chip 12:2135–45.
  • Duwa R, Emami F, Lee S, et al. (2019). Polymeric and lipid-based drug delivery systems for treatment of glioblastoma multiforme. J Ind Eng Chem 79:261–73.
  • Essa D, Kondiah PPD, Choonara YE, Pillay V. (2020). The design of poly(lactide-co-glycolide) nanocarriers for medical applications. Front Bioeng Biotechnol 8:48.
  • Fang K, Song L, Gu Z, et al. (2015). Magnetic field activated drug release system based on magnetic PLGA microspheres for chemo-thermal therapy. Colloids Surf B Biointerfaces 136:712–20.
  • Fernandez-Sanchez L, Bravo-Osuna I, Lax P, et al. (2017). Controlled delivery of tauroursodeoxycholic acid from biodegradable microspheres slows retinal degeneration and vision loss in P23H rats. PLoS One 12:e0177998
  • Floyd JA, Galperin A, Ratner BD. (2015). Drug encapsulated polymeric microspheres for intracranial tumor therapy: A review of the literature. Adv Drug Deliv Rev 91:23–37.
  • Gaspar DP, Gaspar MM, Eleuterio CV, et al. (2017). Microencapsulated solid lipid nanoparticles as a hybrid platform for pulmonary antibiotic delivery. Mol Pharm 14:2977–90.
  • Gaspar MC, Pais A, Sousa JJS, et al. (2019). Development of levofloxacin-loaded PLGA microspheres of suitable properties for sustained pulmonary release. Int J Pharm 556:117–24.
  • Gharse S, Fiegel J. (2016). Large porous hollow particles: Lightweight champions of pulmonary drug delivery. CPD 22:2463–9.
  • Ghumman SA, Noreen S, Muntaha ST. (2020). Linum usitatissimum seed mucilage-alginate mucoadhesive microspheres of metformin HCl: Fabrication, characterization and evaluation. Int J Biol Macromol 155:358–68.
  • Giri TK, Choudhary C, Ajazuddin Alexander, et al. (2013). Prospects of pharmaceuticals and biopharmaceuticals loaded microparticles prepared by double emulsion technique for controlled delivery. Saudi Pharmaceutical Journal 21:125–41.
  • Gong Q, Gao X, Liu W, et al. (2019). Drug-loaded microbubbles combined with ultrasound for thrombolysis and malignant tumor therapy. Biomed Res Int 2019:6792465.
  • Grill AE, Shahani K, Koniar B, Panyam J. (2018). Chemopreventive efficacy of curcumin-loaded PLGA microparticles in a transgenic mouse model of HER-2-positive breast cancer. Drug Deliv Transl Res 8:329–41.
  • Guo R, Sun XT, Zhang Y, et al. (2018). Three-dimensional poly(lactic-co-glycolic acid)/silica colloidal crystal microparticles for sustained drug release and visualized monitoring. J Colloid Interface Sci 530:465–72.
  • Gupta A, Panigrahi PK. (2020). Alternating current coaxial electrospray for micro-encapsulation. Exp Fluids 61:29.
  • Han FY, Thurecht KJ, Whittaker AK, Smith MT. (2016). Bioerodable PLGA-based microparticles for producing sustained-release drug formulations and strategies for improving drug loading. Front Pharmacol 7:185
  • Hao Y, Liu J, Jia Q, et al. (2019). SN-38-Loaded PLGA microspheres injected intratumorally for cancer: preparation, characterization and evaluation. J Drug Delivery Sci Technol 53:101178.
  • He C, Zeng W, Su Y, et al. (2021). Microfluidic-based fabrication and characterization of drug-loaded PLGA magnetic microspheres with tunable shell thickness. Drug Deliv 28:692–9.
  • He T, Wang W, Chen B, et al. (2020). 5-Fluorouracil monodispersed chitosan microspheres: Microfluidic chip fabrication with crosslinking, characterization, drug release and anticancer activity. Carbohydr Polym 236:116094.
  • Helbling IM, Busatto CA, Karp F, et al. (2020). An analysis of the microencapsulation of ceftiofur in chitosan particles using the spray drying technology. Carbohydr Polym 234:115922.
  • Herrmann VL, Hartmayer C, Planz O, Groettrup M. (2015). Cytotoxic T cell vaccination with PLGA microspheres interferes with influenza A virus replication in the lung and suppresses the infectious disease. J Control Release 216:121–31.
  • Hotchkiss KM, Sampson JH. (2021). Temozolomide treatment outcomes and immunotherapy efficacy in brain tumor. J Neurooncol 151:55–62.
  • Hsu M-Y, Feng C-H, Liu Y-W, Liu S-J. (2019). An orthogonal model to study the effect of electrospraying parameters on the morphology of poly (d,l)-lactide-co-glycolide (PLGA) particles. Applied Sciences 9:1077.
  • Hsu MY, Huang YT, Weng CJ, et al. (2020). Preparation and in vitro/in vivo evaluation of doxorubicin-loaded poly[lactic-co-glycol acid] microspheres using electrospray method for sustained drug delivery and potential intratumoral injection. Colloids Surf B Biointerfaces 190:110937
  • Huang H, Yang X, Li H, et al. (2020). iRGD decorated liposomes: A novel actively penetrating topical ocular drug delivery strategy. Nano Res 13:3105–9.
  • Huang KS, Yang CH, Wang YC, et al. (2019). Microfluidic synthesis of Vinblastine-loaded multifunctional particles for magnetically responsive controlled drug release. Pharmaceutics 11:212.
  • Ibraheem D, Elaissari A, Fessi H. (2014). Administration strategies for proteins and peptides. Int J Pharm 477:578–89.
  • Iqbal M, Zafar N, Fessi H, Elaissari A. (2015). Double emulsion solvent evaporation techniques used for drug encapsulation. Int J Pharm 496:173–90.
  • Jafari-Nodoushan M, Barzin J, Mobedi H. (2015). Size and morphology controlling of PLGA microparticles produced by electro hydrodynamic atomization. Polym Adv Technol 26:502–13.
  • Jager RD, Aiello LP, Patel SC, Cunningham ETJ. (2004). Risks of intravitreous injection: a comprehensive review. Retina 24:676–98.
  • Janoria KG, Mitra AK. (2007). Effect of lactide/glycolide ratio on the in vitro release of ganciclovir and its lipophilic prodrug (GCV-monobutyrate) from PLGA microspheres. Int J Pharm 338:133–41.
  • Javanbakht S, Nezhad-Mokhtari P, Shaabani A, et al. (2019). Incorporating Cu-based metal-organic framework/drug nanohybrids into gelatin microsphere for ibuprofen oral delivery. Mater Sci Eng C Mater Biol Appl 96:302–9.
  • Jeong Y-I, Kim D-G, Seo D-H, et al. (2008). Multiparticulation of ciprofloxacin HCl-encapsulated chitosan microspheres using poly(dl-lactide-co-glycolide). J Ind Eng Chem 14:747–51.
  • Jilek S, Zurkaulen H, Pavlovic J, et al. (2004). Transfection of a mouse dendritic cell line by plasmid DNA-loaded PLGA microparticles in vitro. Eur J Pharm Biopharm 58:491–9.
  • Jin L, Pan Y, Pham AC, et al. (2021). Prolonged plasma exposure of the Kv1.3-Inhibitory Peptide HsTX1[R14A] by Subcutaneous Administration of a Poly(Lactic-co-Glycolic Acid) (PLGA) Microsphere Formulation . J Pharm Sci 110:1182–8.
  • Karan S, Debnath S, Kuotsu K, Chatterjee TK. (2020). In-vitro and in-vivo evaluation of polymeric microsphere formulation for colon targeted delivery of 5-fluorouracil using biocompatible natural gum katira. Int J Biol Macromol 158:922–36.
  • Karthick V, Panda S, Kumar VG, et al. (2019). Quercetin loaded PLGA microspheres induce apoptosis in breast cancer cells. Appl Surf Sci 487:211–7.
  • Kim HU, Roh YH, Shim MS, Bong KW. (2019). Microfluidic fabrication of fatty alcohol-based microparticles for NIR light-triggered drug release. J Ind Eng Chem 80:778–83.
  • Kim JS, Park JH, Jeong SC, et al. (2018). Novel revaprazan-loaded gelatin microsphere with enhanced drug solubility and oral bioavailability. J Microencapsul 35:421–7.
  • Kim KT, Lee JY, Kim DD, et al. (2019). Recent progress in the development of poly(lactic-co-glycolic acid)-based nanostructures for cancer imaging and therapy. Pharmaceutics 11:280.
  • Koerner J, Horvath D, Groettrup M. (2019). Harnessing dendritic cells for poly (D,L-lactide-co-glycolide) microspheres (PLGA MS)-mediated anti-tumor therapy. Front Immunol 10:707
  • Lai W-F, Susha AS, Rogach AL, et al. (2017). Electrospray-mediated preparation of compositionally homogeneous core–shell hydrogel microspheres for sustained drug release. RSC Adv 7:44482–91.
  • Le Reste PJ, Pineau R, Voutetakis K, et al. (2020). Local intracerebral inhibition of IRE1 by MKC8866 sensitizes glioblastoma to irradiation/chemotherapy in vivo. Cancer Lett 494:73–83.
  • Lee PW, Pokorski JK. (2018). Poly(lactic-co-glycolic acid) devices: Production and applications for sustained protein delivery. Wiley Interdiscip Rev Nanomed Nanobiotechnol 10:e1516.
  • Lee SY, Choi JW, Lee JY, et al. (2018). Hyaluronic acid/doxorubicin nanoassembly-releasing microspheres for the transarterial chemoembolization of a liver tumor. Drug Deliv 25:1472–83.
  • Lengyel M, Kállai-Szabó N, Antal V, et al. (2019). Microparticles, microspheres, and microcapsules for advanced drug delivery. Sci Pharm 87:20.
  • Li D, Zhang Y, Jin S, et al. (2014). Development of a redox/pH dual stimuli-responsive MSP@P(MAA-Cy) drug delivery system for programmed release of anticancer drugs in tumour cells. J Mater Chem B 2:5187–94.
  • Li G, Yao L, Li J, et al. (2018). Preparation of poly(lactide-co-glycolide) microspheres and evaluation of pharmacokinetics and tissue distribution of BDMC-PLGA-MS in rats. Asian J Pharm Sci 13:82–90.
  • Li J, Zheng H, Li X, et al. (2019). Phospholipid-modified poly(lactide-co-glycolide) microparticles for tuning the interaction with alveolar macrophages: In vitro and in vivo assessment. Eur J Pharm Biopharm 143:70–9.
  • Li L, Li C, Zhou J. (2018). Effective sustained release of 5-FU-loaded PLGA implant for improving therapeutic index of 5-FU in colon tumor. Int J Pharm 550:380–7.
  • Li S, Xiao L, Deng H, et al. (2017). Remote controlled drug release from multi-functional Fe3O4/GO/Chitosan microspheres fabricated by an electrospray method. Colloids Surf B Biointerfaces 151:354–62.
  • Li W, Zhang L, Ge X, et al. (2018). Microfluidic fabrication of microparticles for biomedical applications. Chem Soc Rev 47:5646–83.
  • Li X, Wei Y, Wen K, et al. (2021). Novel insights on the encapsulation mechanism of PLGA terminal groups on ropivacaine. Eur J Pharm Biopharm 160:143–51.
  • Li X, Zeng D, Ke P, et al. (2020). Synthesis and characterization of magnetic chitosan microspheres for drug delivery. RSC Adv 10:7163–9.
  • Li Z, Shan X, Chen Z, et al. (2020). Applications of surface modification technologies in nanomedicine for deep tumor penetration. Adv Sci (Weinh) 8:2002589.
  • Liang C, Song J, Zhang Y, et al. (2020). Facile approach to prepare rGO@Fe3O4 microspheres for the magnetically targeted and NIR-responsive chemo-photothermal combination therapy. Nanoscale Res Lett 15:86.
  • Lin Q, Cai Y, Yuan M, et al. (2014). Development of a 5-fluorouracil-loaded PLGA microsphere delivery system by a solid-in-oil-in-hydrophilic oil (S/O/hO) novel method for the treatment of tumors. Oncol Rep 32:2405–10.
  • Lin Q, Pan J, Lin Q, Liu Q. (2013). Microwave synthesis and adsorption performance of a novel crosslinked starch microsphere. J Hazard Mater 263:517–24.
  • Lin XF, Kankala RK, Tang N, et al. (2019). Supercritical fluid-assisted porous microspheres for efficient delivery of Insulin and inhalation therapy of diabetes. Adv Healthc Mater 8:e1800910.
  • Liu J, Xu Y, Liu Z, et al. (2019). A modified hydrophobic ion-pairing complex strategy for long-term peptide delivery with high drug encapsulation and reduced burst release from PLGA microspheres. Eur J Pharm Biopharm 144:217–29.
  • Liu W, Chen XD, Selomulya C. (2015). On the spray drying of uniform functional microparticles. Particuology 22:1–12.
  • Liu Z, Ye W, Zheng J, et al. (2020). Hierarchically electrospraying a PLGA@chitosan sphere-in-sphere composite microsphere for multi-drug-controlled release. Regen Biomater 7:381–90.
  • Lu JM, Wang X, Marin-Muller C, et al. (2009). Current advances in research and clinical applications of PLGA-based nanotechnology. Expert Rev Mol Diagn 9:325–41.
  • Lu Y, Wu F, Duan W, et al. (2020). Engineering a "PEG-g-PEI/DNA nanoparticle-in- PLGA microsphere" hybrid controlled release system to enhance immunogenicity of DNA vaccine. Mater Sci Eng C Mater Biol Appl 106:110294
  • Ma C, Zhang Y, Jiao Z, et al. (2020). A nanocarrier based on poly(d,l-lactic-co-glycolic acid) for transporting Na + and Cl − to induce apoptosis. Chin Chem Lett 31:1635–9.
  • Ma G. (2014). Microencapsulation of protein drugs for drug delivery: strategy, preparation, and applications. J Control Release 193:324–40.
  • Mahajan HS, Gundare SA. (2014). Preparation, characterization and pulmonary pharmacokinetics of xyloglucan microspheres as dry powder inhalation. Carbohydr Polym 102:529–36.
  • Malakinezhad H, Kalaee M, Abdouss M, et al. (2020). Fabrication and characterization of biodegradable pH-responsive halloysite poly(lactic-co-glycolic acid) micro-sphere for controlled released of phenytoin sodium. J Inorg Organomet Polym 30:722–30.
  • Malik SA, Ng WH, Bowen J, et al. (2016). Electrospray synthesis and properties of hierarchically structured PLGA TIPS microspheres for use as controlled release technologies. J Colloid Interface Sci 467:220–9.
  • Marcianes P, Negro S, Barcia E, et al. (2019). Potential active targeting of Gatifloxacin to macrophages by means of surface-modified PLGA microparticles destined to treat tuberculosis. AAPS PharmSciTech 21:15
  • Mehta M, Deeksha, Sharma N, et al. (2019). Interactions with the macrophages: An emerging targeted approach using novel drug delivery systems in respiratory diseases. Chem Biol Interact 304:10–9.
  • Messa LL, Souza CF, Faez R. (2020). Spray-dried potassium nitrate-containing chitosan/montmorillonite microparticles as potential enhanced efficiency fertilizer. Polym Test 81:106196.
  • Miranda MS, Rodrigues MT, Domingues RMA, et al. (2018). Exploring inhalable polymeric dry powders for anti-tuberculosis drug delivery. Mater Sci Eng C Mater Biol Appl 93:1090–103.
  • Morais AIS, Vieira EG, Afewerki S, et al. (2020). Fabrication of polymeric microparticles by electrospray: the impact of experimental parameters. JFB 11:4.
  • Nawar S, Stolaroff JK, Ye C, et al. (2020). Parallelizable microfluidic dropmakers with multilayer geometry for the generation of double emulsions. Lab Chip 20:147–54.
  • Nguyen DN, Clasen C, Van den Mooter G. (2016). Pharmaceutical applications of electrospraying. J Pharm Sci 105:2601–20.
  • Ni G, Yang G, He Y, et al. (2020). Uniformly sized hollow microspheres loaded with polydopamine nanoparticles and doxorubicin for local chemo-photothermal combination therapy. Chemical Engineering Journal 379:122317.
  • Ozeki T, Kaneko D, Hashizawa K, et al. (2012). Improvement of survival in C6 rat glioma model by a sustained drug release from localized PLGA microspheres in a thermoreversible hydrogel. Int J Pharm 427:299–304.
  • Ozturk AA, Kiyan HT. (2020). Treatment of oxidative stress-induced pain and inflammation with dexketoprofen trometamol loaded different molecular weight chitosan nanoparticles: Formulation, characterization and anti-inflammatory activity by using in vivo HET-CAM assay. Microvasc Res 128:103961.
  • Panchal SS, Vasava DV. (2020). Biodegradable polymeric materials: synthetic approach. ACS Omega 5:4370–9.
  • Park H, Ha DH, Ha ES, et al. (2019). Effect of stabilizers on encapsulation efficiency and release behavior of Exenatide-Loaded PLGA microsphere prepared by the W/O/W solvent evaporation method. Pharmaceutics 11:627.
  • Patel A, Cholkar K, Agrahari V, Mitra AK. (2013). Ocular drug delivery systems: An overview. World J Pharmacol 2:47–64.
  • Pathak S, Gupta B, Poudel BK, et al. (2016). Preparation of high-payload, prolonged-release biodegradable poly(lactic-co-glycolic acid)-based tacrolimus microspheres using the single-jet electrospray method. Chem Pharm Bull (Tokyo) 64:171–8.
  • Patil P, Singh S, Sarvanan J. (2018). Preparation and evaluation of microspheres of flurbiprofen. Int J Pharm Sci Res 9:5388–93.
  • Peng H-Y, Wang W, Xie R, et al. (2020). Mesoscale regulation of droplet templates to tailor microparticle structures and functions. Particuology 48:74–87.
  • Peng Y, Nie J, Cheng W, et al. (2018). A multifunctional nanoplatform for cancer chemo-photothermal synergistic therapy and overcoming multidrug resistance. Biomater Sci 6:1084–98.
  • Prajapati SK, Jain A, Jain A, Jain S. (2019). Biodegradable polymers and constructs: A novel approach in drug delivery. Eur Polym J 120:109191.
  • Prajapati VD, Jani GK, Kapadia JR. (2015). Current knowledge on biodegradable microspheres in drug delivery. Expert Opin Drug Deliv 12:1283–99.
  • Rahn JJ, Lun X, Jorch SK, et al. (2020). Development of a peptide-based delivery platform for targeting malignant brain tumors. Biomaterials 252:120105
  • Ramazani F, Chen W, Van Nostrum CF, et al. (2015). Formulation and characterization of microspheres loaded with imatinib for sustained delivery. Int J Pharm 482:123–30.
  • Ramazani F, Chen W, van Nostrum CF, et al. (2016). Strategies for encapsulation of small hydrophilic and amphiphilic drugs in PLGA microspheres: State-of-the-art and challenges. Int J Pharm 499:358–67.
  • Ré M-I. (2006). Formulating drug delivery systems by spray drying. Drying Technol 24:433–46.
  • Ren X, Wang N, Zhou Y, et al. (2021). An injectable hydrogel using an immunomodulating gelator for amplified tumor immunotherapy by blocking the arginase pathway. Acta Biomater 124:179–90.
  • Rezvantalab S, Keshavarz Moraveji M. (2019). Microfluidic assisted synthesis of PLGA drug delivery systems. RSC Adv 9:2055–72.
  • Rong X, Yuan W, Lu Y, Mo X. (2014). Safety evaluation of poly(lactic-co-glycolic acid)/poly(lactic-acid) microspheres through intravitreal injection in rabbits. Int J Nanomedicine 9:3057–68.
  • Ruman U, Fakurazi S, Masarudin MJ, Hussein MZ. (2020). Nanocarrier-based therapeutics and theranostics drug delivery systems for next generation of liver cancer nanodrug modalities. Int J Nanomedicine 15:1437–56.
  • Shah SR, Kim J, Schiapparelli P, et al. (2019). Verteporfin-loaded polymeric microparticles for intratumoral treatment of brain cancer. Mol Pharm 16:1433–43.
  • Shakeri S, Ashrafizadeh M, Zarrabi A, et al. (2020). Multifunctional polymeric nanoplatforms for brain diseases diagnosis, therapy and theranostics. Biomedicines 8:13.
  • Shavi GV, Nayak UY, Reddy MS, et al. (2017). A novel long-acting biodegradable depot formulation of anastrozole for breast cancer therapy. Mater Sci Eng C Mater Biol Appl 75:535–44.
  • Shi N-Q, Zhou J, Walker J, et al. (2020). Microencapsulation of luteinizing hormone-releasing hormone agonist in poly (lactic-co-glycolic acid) microspheres by spray-drying. J Control Release 321:756–72.
  • Sommer CM, Do TD, Schlett CL, et al. (2018). In vivo characterization of a new type of biodegradable starch microsphere for transarterial embolization. J Biomater Appl 32:932–44.
  • Song X, Zhao Y, Hou S, et al. (2008). Dual agents loaded PLGA nanoparticles: systematic study of particle size and drug entrapment efficiency. Eur J Pharm Biopharm 69:445–53.
  • Stefani RM, Lee AJ, Tan AR, et al. (2020). Sustained low-dose dexamethasone delivery via a PLGA microsphere-embedded agarose implant for enhanced osteochondral repair. Acta Biomater 102:326–40.
  • Terry TL, Givens BE, Rodgers VGJ, Salem AK. (2019). Tunable properties of poly-DL-lactide-monomethoxypolyethylene glycol porous microparticles for sustained release of polyethylenimine-DNA polyplexes. AAPS PharmSciTech 20:23
  • Tesfay D, Abrha S, Yilma Z, et al. (2020). Preparation,optimization, and evaluation of epichlorohydrin cross-linked enset (Ensete ventricosum (Welw.) Cheeseman) starch as drug release sustaining excipient in microsphere formulation. Biomed Res Int 2020:2147971.
  • Tian H, Zhang M, Jin G, et al. (2021). Cu-MOF chemodynamic nanoplatform via modulating glutathione and H(2)O(2) in tumor microenvironment for amplified cancer therapy. J Colloid Interface Sci 587:358–66.
  • Waldron K, Wu WD, Wu Z, et al. (2014). Formation of monodisperse mesoporous silica microparticles via spray-drying. J Colloid Interface Sci 418:225–33.
  • Walter E, Dreher D, Kok M, et al. (2001). Hydrophilic poly(DL-lactide-co-glycolide) microspheres for the delivery of DNA to human-derived macrophages and dendritic cells. J Control Release 76:149–68.(01)00413-8
  • Wan F, Yang M. (2016). Design of PLGA-based depot delivery systems for biopharmaceuticals prepared by spray drying. Int J Pharm 498:82–95.
  • Wang F-J, Wang C-H. (2003). Etanidazole-loaded microspheres fabricated by spray-drying different poly(lactide/glycolide) polymers: effects on microsphere properties. J Biomater Sci Polym Ed 14:157–83.
  • Wang J, Helder L, Shao J, et al. (2019). Encapsulation and release of doxycycline from electrospray-generated PLGA microspheres: Effect of polymer end groups. Int J Pharm 564:1–9.
  • Wang P, Li Y, Jiang M. (2018). Effects of the multilayer structures on Exenatide release and bioactivity in microsphere/thermosensitive hydrogel system. Colloids Surf B Biointerfaces 171:85–93.
  • Wang W, Cai Y, Zhang G, et al. (2016). Sophoridine-loaded PLGA microspheres for lung targeting: preparation, in vitro, and in vivo evaluation. Drug Deliv 23:3674–80.
  • Wei H, Li W, Chen H, et al. (2020). Simultaneous Diels-Alder click reaction and starch hydrogel microsphere production via spray drying. Carbohydr Polym 241:116351.
  • Wei Y, Huang YH, Cheng KC, Song YL. (2020). Investigations of the influences of processing conditions on the properties of spray dried chitosan-tripolyphosphate particles loaded with Theophylline. Sci Rep 10:1155
  • Wei Y, Zhao L. (2014). Passive lung-targeted drug delivery systems via intravenous administration. Pharm Dev Technol 19:129–36.
  • Wen H, Guo J, Chang B, Yang W. (2013). pH-responsive composite microspheres based on magnetic mesoporous silica nanoparticle for drug delivery. Eur J Pharm Biopharm 84:91–8.
  • Wu D, Wang C, Yang J, et al. (2016). Improving the intracellular drug concentration in lung cancer treatment through the codelivery of Doxorubicin and miR-519c mediated by porous PLGA microparticle. Mol Pharmaceutics 13:3925–33.
  • Xu K, An N, Zhang H, et al. (2020). Sustained-release of PDGF from PLGA microsphere embedded thermosensitive hydrogel promoting wound healing by inhibiting autophagy. J Drug Delivery Sci Technol 55:101405.
  • Yang H, Yang Y, Li BZ, et al. (2020). Production of protein-loaded starch microspheres using water-in-water emulsion method. Carbohydr Polym 231:115692
  • Yang M, Kumar RK, Hansbro PM, Foster PS. (2012). Emerging roles of pulmonary macrophages in driving the development of severe asthma. J Leukoc Biol 91:557–69.
  • Ye C, Venkatraman S. (2019). The long-term delivery of proteins and peptides using micro/nanoparticles: overview and perspectives. Ther Deliv 10:269–72.
  • Yurtdas KG, Ozturk AA. (2020). Levocetirizine Dihydrochlorid-loaded chitosan nanoparticles: formulation and in vitro evaluation. Turk J Pharm Sci 17:27–35.
  • Zeng W, Guo P, Jiang P, et al. (2020). Combination of microfluidic chip and electrostatic atomization for the preparation of drug-loaded core-shell nanoparticles. Nanotechnology 31:145301
  • Zeng X, Tao W, Mei L, et al. (2013). Cholic acid-functionalized nanoparticles of star-shaped PLGA-vitamin E TPGS copolymer for docetaxel delivery to cervical cancer. Biomaterials 34:6058–67.
  • Zhai J, Wang YE, Zhou X, et al. (2020). Long-term sustained release poly(lactic-co-glycolic acid) microspheres of asenapine maleate with improved bioavailability for chronic neuropsychiatric diseases. Drug Deliv 27:1283–91.
  • Zhai P, Chen XB, Schreyer DJ. (2015). PLGA/alginate composite microspheres for hydrophilic protein delivery. Mater Sci Eng C Mater Biol Appl 56:251–9.
  • Zhang C, Yang L, Wan F, et al. (2020). Quality by design thinking in the development of long-acting injectable PLGA/PLA-based microspheres for peptide and protein drug delivery. Int J Pharm 585:119441
  • Zhang J, Wang N, Li Q, et al. (2021). A two-pronged photodynamic nanodrug to prevent metastasis of basal-like breast cancer. Chem Commun (Camb) 57:2305–8.
  • Zhang X, Li W, Dou X, et al. (2020). Astaxanthin encapsulated in biodegradable calcium alginate microspheres for the treatment of hepatocellular carcinoma in vitro. Appl Biochem Biotechnol 191:511–27.
  • Zhang Z, Wang X, Li B, et al. (2018). Development of a novel morphological paclitaxel-loaded PLGA microspheres for effective cancer therapy: in vitro and in vivo evaluations. Drug Deliv 25:166–77.
  • Zhao R, Xu J, Guo B. (2017). Preparation and in vitro evaluation of biodegradable microspheres with narrow size distribution for pulmonary delivery. pharmaceutical-sciences 79:930–8.
  • Zhao W, Liu W, Xu R, et al. (2019). Fabrication and characterization of dual drug-loaded poly (lactic-co-glycolic acid) fiber-microsphere composite scaffolds. Inter J Polymeric Mater Polymeric Biomater 68:375–83.
  • Zhou XQ, Hou CL, Chang TL, et al. (2020). Controlled released of drug from doubled-walled PVA hydrogel/PCL microspheres prepared by single needle electrospraying method. Colloid Surf B-Biointerfaces 187:110645.
  • Zhou Y, Liu L, Cao Y, et al. (2020). A nanocomposite vehicle based on Metal-Organic Framework Nanoparticle Incorporated Biodegradable Microspheres for Enhanced Oral Insulin Delivery . ACS Appl Mater Interfaces 12:22581–92.
  • Zou Q, Hou F, Wang H, et al. (2019). Microfluidic one-step preparation of alginate microspheres encapsulated with in situ-formed bismuth sulfide nanoparticles and their photothermal effect. Eur Polym J 115:282–9.