2,653
Views
13
CrossRef citations to date
0
Altmetric
Research Article

Development of thermosensitive poloxamer 407-based microbubble gel with ultrasound mediation for inner ear drug delivery

, , , , &
Pages 1256-1271 | Received 03 May 2021, Accepted 31 May 2021, Published online: 18 Jun 2021

References

  • Ahmed EM. (2015). Hydrogel: preparation, characterization, and applications: a review. J Adv Res 6:105–21.
  • Chen H-K, Zhang S-M, Chang J-L, et al. (2018). Insonation of systemically delivered cisplatin-loaded microbubbles significantly attenuates nephrotoxicity of chemotherapy in experimental models of head and neck cancer. Cancers 10:311.
  • Devare J, Gubbels S, Raphael Y. (2018). Outlook and future of inner ear therapy. Hear Res 368:127–35.
  • Dirain CO, Vasquez TK, Antonelli PJ. (2018). Prevention of chlorhexidine ototoxicity with poloxamer in rats. Otol Neurotol 39:e738–42.
  • Dumortier G, Grossiord JL, Agnely F, Chaumeil JC. (2006). A review of poloxamer 407 pharmaceutical and pharmacological characteristics. Pharm Res 23:2709–28.
  • El Sabbagh NG, et al. (2017). Intratympanic dexamethasone in sudden sensorineural hearing loss: a systematic review and meta-analysis. Laryngoscope 127:1897–908.
  • Espinosa-Sanchez JM, Lopez-Escamez JA. (2016). Menière’s disease. Handb Clin Neurol 137:257–77.
  • Fakhari A, Corcoran M, Schwarz A. (2017). Thermogelling properties of purified poloxamer 407. Heliyon 3:e00390.
  • Feng HY, Sun JJ, Jiang P. (2007). [Effect of poloxamer 407 on the middle ear and inner ear after regional perfusion in guinea pigs]. Zhonghua Er Bi Yan Hou Tou Jing Wai Ke Za Zhi 42:443–6.
  • Feng HY, Sun JJ, Jiang P. (2008). [In vitro and in vivo biodegradation of sustained-release vehicle poloxamer 407 in situ gel]. Lin Chung Er Bi Yan Hou Tou Jing Wai Ke Za Zhi 22:28–31.
  • Gong C, Qi T, Wei X, et al. (2013). Thermosensitive polymeric hydrogels as drug delivery systems. Curr Med Chem 20:79–94.
  • Hao J, Li SK. (2019). Inner ear drug delivery: recent advances, challenges, and perspective. Eur J Pharm Sci 126:82–92.
  • Harrop-Jones A, Fernandez R, Fernandez R, et al. (2016). The sustained-exposure dexamethasone formulation OTO-104 offers effective protection against cisplatin-induced hearing loss. Audiol Neurotol 21:22–9.
  • Hoffman AS. (2002). Hydrogels for biomedical applications. Adv Drug Deliv Rev 54:3–12.
  • Huang H, Qi X, Chen Y, Wu Z. (2019). Thermo-sensitive hydrogels for delivering biotherapeutic molecules: a review. Saudi Pharm J 27:990–9.
  • Jeong B, Kim SW, Bae YH. (2002). Thermosensitive sol-gel reversible hydrogels. Adv Drug Deliv Rev 54:37–51.
  • Klouda L, Mikos AG. (2008). Thermoresponsive hydrogels in biomedical applications. Eur J Pharm Biopharm 68:34–45.
  • Lee JW, Hua F, Lee DS. (2001). Thermoreversible gelation of biodegradable poly(epsilon-caprolactone) and poly(ethylene glycol) multiblock copolymers in aqueous solutions. J Control Release 73:315–27.
  • Li W, Hartsock JJ, Dai C, Salt AN. (2018). Permeation enhancers for intratympanically-applied drugs studied using fluorescent dexamethasone as a marker. Otol Neurotol 39:639–47.
  • Liao A-H, Chuang H-C, Chang B-Y, et al. (2018). Combining microbubble contrast agent with pulsed-laser irradiation for transdermal drug delivery. Pharmaceutics 10:175.
  • Liao AH, Lu Y-J, Hung C-R, Yang M-Y. (2016). Efficacy of transdermal magnesium ascorbyl phosphate delivery after ultrasound treatment with microbubbles in gel-type surrounding medium in mice. Mater Sci Eng C Mater Biol Appl 61:591–8.
  • Liao A-H, Lu Y-J, Lin Y-C, et al. (2016). Effectiveness of a layer-by-layer microbubbles-based delivery system for applying minoxidil to enhance hair growth. Theranostics 6:817–27.
  • Liao A-H, Wang C-H, Weng P-Y, et al. (2020). Ultrasound-induced microbubble cavitation via a transcanal or transcranial approach facilitates inner ear drug delivery. JCI Insight 5:e132880.
  • Lin YC, Chen HC, Chen HK, et al. (2019). Ultrastructural changes associated with the enhanced permeability of the round window membrane mediated by ultrasound microbubbles. Front Pharmacol 10:1580.
  • Mäder K, Lehner E, Liebau A, Plontke SK. (2018). Controlled drug release to the inner ear: concepts, materials, mechanisms, and performance. Hearing Res 368:49–66.
  • Mair EA, Park AH, Don D, et al. (2016). Safety and efficacy of intratympanic ciprofloxacin otic suspension in children with middle ear effusion undergoing tympanostomy tube placement: two randomized clinical trials. JAMA Otolaryngol Head Neck Surg 142:444–51.
  • Mao Y, Thompson MJ, Wang Q, Tsai EW. (2004). Quantitation of poloxamers in pharmaceutical formulations using size exclusion chromatography and colorimetric methods. J Pharm Biomed Anal 35:1127–42.
  • McCall AA, Swan EEL, Borenstein JT, et al. (2010). Drug delivery for treatment of inner ear disease: current state of knowledge. Ear Hearing 31:156–65.
  • Mendonsa NS, Murthy SN, Hashemnejad SM, et al. (2018). Development of poloxamer gel formulations via hot-melt extrusion technology. Int J Pharm 537:122–31.
  • Nyberg S, Abbott NJ, Shi X, et al. (2019). Delivery of therapeutics to the inner ear: the challenge of the blood-labyrinth barrier. Sci Transl Med 11:eaao0935.
  • Piu F, Wang X, Fernandez R, et al. (2011). OTO-104: a sustained-release dexamethasone hydrogel for the treatment of otic disorders. Otol Neurotol 32:171–9.
  • Salt AN, Hartstock J, Plontke S, et al. (2011). Distribution of dexamethasone and preservation of inner ear function following intratympanic delivery of a gel-based formulation. Audiol Neurotol 16:323–35.
  • Salt AN, Plontke SK. (2018). Pharmacokinetic principles in the inner ear: influence of drug properties on intratympanic applications. Hear Res 368:28–40.
  • Santimetaneedol A, Wang Z, Arteaga DN, et al. (2019). Small molecule delivery across a perforated artificial membrane by thermoreversible hydrogel poloxamer 407. Colloids Surf, B 182:110300.
  • Shau PA, Dangre PV, Potnis VV. (2015). Formulation of thermosensitive in situ otic gel for topical management of otitis media. Indian J Pharm Sci 77:764–70.
  • Shih CP, Chen HC, Chen HK, et al. (2013). Ultrasound-aided microbubbles facilitate the delivery of drugs to the inner ear via the round window membrane. J Control Release 167:167–74.
  • Shih CP, Chen H-C, Lin Y-C, et al. (2019). Middle‐ear dexamethasone delivery via ultrasound microbubbles attenuates noise‐induced hearing loss. The Laryngoscope 129:1907–14.
  • Soliman KA, Ullah K, Shah A, et al. (2019). Poloxamer-based in situ gelling thermoresponsive systems for ocular drug delivery applications. Drug Discov Today 24:1575–86.
  • Swan EE, Mescher MJ, Sewell WF, et al. (2008). Inner ear drug delivery for auditory applications. Adv Drug Deliv Rev 60:1583–99.
  • Takemura K, et al. (2004). Direct inner ear infusion of dexamethasone attenuates noise-induced trauma in guinea pig. Hear Res 196:58–68.
  • Wang X, Dellamary L, Fernandez R, et al. (2009). Dose-dependent sustained release of dexamethasone in inner ear cochlear fluids using a novel local delivery approach. Audiol Neurotol 14:393–401.
  • Wang X, Dellamary L, Fernandez R, et al. (2011). Principles of inner ear sustained release following intratympanic administration. Laryngoscope 121:385–91.
  • Zhang K, Shi X, Lin X, et al. (2015). Poloxamer-based in situ hydrogels for controlled delivery of hydrophilic macromolecules after intramuscular injection in rats. Drug Deliv 22:375–82.