1,892
Views
8
CrossRef citations to date
0
Altmetric
Research Article

Engineering of injectable hydrogels associate with Adipose-Derived stem cells delivery for anti-cardiac hypertrophy agents

, , , , , & show all
Pages 1334-1341 | Received 03 May 2021, Accepted 07 Jun 2021, Published online: 28 Jun 2021

References

  • Mohan N, Mohamed Subarkhan MK, Ramesh R. (2018). Synthesis, antiproliferative activity and apoptosis-promoting effects of arene ruthenium(II) complexes with N, O chelating ligands. J. Organomet. Chem 859:124–31. https://doi.org/10.1016/j.jorganchem.2018.01.022.
  • Zhang Y, Zhu D, Wei Y, et al. (2019). A collagen hydrogel loaded with HDAC7-derived peptide promotes the regeneration of infarcted myocardium with functional improvement in a rodent model. Acta Biomater 86:223–34.
  • Arzaghi H, Rahimi B, Adel B, et al. (2021). Nanomaterials modulating stem cell behavior towards cardiovascular cell lineage. Mater Adv 2:2231–62.
  • Budharaju H, Subramanian A, Sethuraman S. (2021). Recent advancements in cardiovascular bioprinting and bioprinted cardiac constructs. Biomater Sci 9:1974–94.
  • Chen Y, Shi J, Zhang Y, et al. (2020). An injectable thermosensitive hydrogel loaded with an ancient natural drug colchicine for myocardial repair after infarction. J Mater Chem B 8:980–92.
  • Cui X, Tang J, Hartanto Y, et al. (2018). NIPAM-based microgel microenvironment regulates the therapeutic function of cardiac stromal cells. ACS Appl Mater Interfaces 10:37783–96.
  • Domengé O, Ragot H, Deloux R, et al. (2021). Efficacy of epicardial implantation of acellular chitosan hydrogels in ischemic and nonischemic heart failure: impact of the acetylation degree of chitosan. Acta Biomater 119:125–39.
  • Efraim Y, Sarig H, Cohen Anavy N, et al. (2017). Biohybrid cardiac ECM-based hydrogels improve long term cardiac function post myocardial infarction. Acta Biomater 50:220–33.
  • Fan Z, Fu M, Xu Z, et al. (2017). Sustained release of a peptide-based matrix metalloproteinase-2 inhibitor to attenuate adverse cardiac remodeling and improve cardiac function following myocardial infarction. Biomacromolecules 18:2820–9.
  • Feng J, Wu Y, Chen W, et al. (2020). Sustained release of bioactive IGF-1 from a silk fibroin microsphere-based injectable alginate hydrogel for the treatment of myocardial infarction. J Mater Chem B 8:308–15.
  • Fu H, Fu J, Ma S, et al. (2020). An ultrasound activated oxygen generation nanosystem specifically alleviates myocardial hypoxemia and promotes cell survival following acute myocardial infarction. J Mater Chem B 8:6059–68.
  • Gao L, Yi M, Xing M, et al. (2020). In situ activated mesenchymal stem cells (MSCs) by bioactive hydrogels for myocardial infarction treatment. J Mater Chem B 8:7713–22.
  • Garbayo E, Ruiz-Villalba A, Hernandez SC, et al. (2021). Delivery of cardiovascular progenitors with biomimetic microcarriers reduces adverse ventricular remodeling in a rat model of chronic myocardial infarction. Acta Biomater 126:394–407.
  • Han Y, Yang W, Cui W, et al. (2019). Retracted Article: development of functional hydrogels for heart failure. J Mater Chem B 7:1563–80.
  • Kaya I, Sämfors S, Levin M, et al. (2020). Multimodal MALDI imaging mass spectrometry reveals spatially correlated lipid and protein changes in mouse heart with acute myocardial infarction. J Am Soc Mass Spectrom 31:2133–42.
  • Kim CW, Kim CJ, Park E-H, et al. (2020). MSC-encapsulating in situ cross-linkable gelatin hydrogels to promote myocardial repair. ACS Appl Bio Mater 3:1646–55.
  • Li H, Gao J, Shang Y, et al. (2018). Folic acid derived hydrogel enhances the survival and promotes therapeutic efficacy of iPS cells for acute myocardial infarction. ACS Appl Mater Interfaces 10:24459–68.
  • Li J, Duan W, Wang L, et al. (2020). Metabolomics study revealing the potential risk and predictive value of fragmented QRS for acute myocardial infarction. J Proteome Res 19:3386–95.
  • Li M, Tang X, Liu X, et al. (2020). Targeted miR-21 loaded liposomes for acute myocardial infarction. J Mater Chem B 8:10384–91.
  • Li Y, Rodrigues J, Tomás H. (2012). Injectable and biodegradable hydrogels: gelation, biodegradation and biomedical applications. Chem Soc Rev 41:2193–221.
  • Liang W, Chen J, Li L, et al. (2019). Conductive hydrogen sulfide-releasing hydrogel encapsulating ADSCs for myocardial infarction treatment. ACS Appl Mater Interfaces 11:14619–29.
  • Lin Y, Liu J, Bai R, et al. (2020). Mitochondria-inspired nanoparticles with microenvironment-adapting capacities for on-demand drug delivery after ischemic Injury. ACS Nano 14:11846–59.
  • Liu G, Yuan Q, Hollett G, et al. (2018). Cyclodextrin-based host–guest supramolecular hydrogel and its application in biomedical fields. Polym Chem 9:3436–49.
  • Liu Q, Aroonyadet N, Song Y, et al. (2016). Highly sensitive and quick detection of acute myocardial infarction biomarkers using In2O3 nanoribbon biosensors fabricated using shadow masks. ACS Nano 10:10117–25.
  • Lyu Y, Xie J, Liu Y, et al. (2020). Injectable hyaluronic acid hydrogel loaded with functionalized human mesenchymal stem cell aggregates for repairing infarcted myocardium. ACS Biomater Sci Eng 6:6926–37.
  • Melhem MR, Park J, Knapp L, et al. (2017). 3D printed stem-cell-laden, microchanneled hydrogel patch for the enhanced release of cell-secreting factors and treatment of myocardial infarctions. ACS Biomater Sci Eng 3:1980–7.
  • Mohamed Subarkhan MK, Ramesh R, Liu Y. (2016). Synthesis and molecular structure of arene ruthenium(II) benzhydrazone complexes: Impact of substitution at the chelating ligand and arene moiety on antiproliferative activity. New J Chem 40:9813–23.
  • Mukherjee S, Venugopal JR, Ravichandran R, et al. (2010). Multimodal biomaterial strategies for regeneration of infarcted myocardium. J Mater Chem 20:8819–31.
  • Navaei A, Moore N, Sullivan RT, et al. (2017). Electrically conductive hydrogel-based micro-topographies for the development of organized cardiac tissues. RSC Adv 7:3302–12.
  • Noshadi I, Hong S, Sullivan KE, et al. (2017). In vitro and in vivo analysis of visible light crosslinkable gelatin methacryloyl (GelMA) hydrogels. Biomater Sci 5:2093–105.
  • Paul A, Hasan A, Al Kindi H, et al. (2014). Injectable graphene oxide/hydrogel-based angiogenic gene delivery system for vasculogenesis and cardiac repair. ACS Nano 8:8050–62.
  • Rufaihah AJ, Yasa IC, Ramanujam VS, et al. (2017). Angiogenic peptide nanofibers repair cardiac tissue defect after myocardial infarction. Acta Biomater 58:102–12.
  • Sack KL, Aliotta E, Choy JS, et al. (2020). Intra-myocardial alginate hydrogel injection acts as a left ventricular mid-wall constraint in swine. Acta Biomater 111:170–80.
  • Shi J, Yu L, Ding J. (2021). PEG-based thermosensitive and biodegradable hydrogels. Acta Biomater 21:00246–4.
  • Song Y, Zhang C, Zhang J, et al. (2016). An injectable silk sericin hydrogel promotes cardiac functional recovery after ischemic myocardial infarction. Acta Biomater 41:210–23.
  • Su T, Huang K, Daniele MA, et al. (2018). Cardiac stem cell patch integrated with microengineered blood vessels promotes cardiomyocyte proliferation and neovascularization after acute myocardial infarction.ACS Appl Mater Interfaces 10:33088–96.
  • Subarkhan MKM, Ramesh R. (2016). Ruthenium(ii) arene complexes containing benzhydrazone ligands: synthesis, structure and antiproliferative activity. Inorg Chem Front 3:1245–55.
  • Tang J, Cui X, Caranasos TG, et al. (2017). Heart repair using nanogel-encapsulated human cardiac stem cells in mice and pigs with myocardial infarction. ACS Nano 11:9738–49.
  • Thi PL, Lee Y, Tran DL, et al. (2020). In situ forming and reactive oxygen species-scavenging gelatin hydrogels for enhancing wound healing efficacy. Acta Biomater 103:142–52.
  • Tous E, Ifkovits JL, Koomalsingh KJ, et al. (2011). Influence of injectable hyaluronic acid hydrogel degradation behavior on infarction-induced ventricular remodeling. Biomacromolecules 12:4127–35.
  • Vignoli A, Tenori L, Giusti B, et al. (2020). Differential network analysis reveals metabolic determinants associated with mortality in acute myocardial infarction patients and suggests potential mechanisms underlying different clinical scores used to predict death. J Proteome Res 19:949–61.
  • Wang J, Wang X, Ren L, et al. (2009). Conjugation of biomolecules with magnetic protein microspheres for the assay of early biomarkers associated with acute myocardial infarction. Anal Chem 81:6210–7.
  • Wang T, Jiang X-J, Tang Q-Z, et al. (2009). Bone marrow stem cells implantation with alpha-cyclodextrin/MPEG-PCL-MPEG hydrogel improves cardiac function after myocardial infarction . Acta Biomater 5:2939–44.
  • Wang W, Chen J, Li M, et al. (2019). Rebuilding postinfarcted cardiac functions by injecting TIIA@PDA nanoparticle-cross-linked ROS-sensitive hydrogels. ACS Appl Mater Interfaces 11:2880–90.
  • Wang Z, Long DW, Huang Y, et al. (2017). Fibroblast growth factor-1 released from a heparin coacervate improves cardiac function in a mouse myocardial infarction model. ACS Biomater Sci Eng 3:1988–99.
  • Waters R, Alam P, Pacelli S, et al. (2018). Stem cell-inspired secretome-rich injectable hydrogel to repair injured cardiac tissue. Acta Biomater 69:95–106.
  • Y-K (Aden) W, Yu J. (2015). The role of tissue engineering in cellular therapies for myocardial infarction: a review. J Mater Chem B 3:6401–10.
  • Yu C, Yao F, Li J. (2021). Rational design of injectable conducting polymer-based hydrogels for tissue engineering. Acta Biomater 21:00264–6.
  • Yuan Z, Tsou Y-H, Zhang X-Q, et al. (2019). Injectable citrate-based hydrogel as an angiogenic biomaterial improves cardiac repair after myocardial infarction. ACS Appl Mater Interfaces 11:38429–39.
  • Zhao G, Feng Y, Xue L, et al. (2021). Anisotropic conductive reduced graphene oxide/silk matrices promote post-infarction myocardial function by restoring electrical integrity. Acta Biomater21:00231–2.