2,082
Views
8
CrossRef citations to date
0
Altmetric
Research Article

Study on mechanism of low bioavailability of black tea theaflavins by using Caco-2 cell monolayer

ORCID Icon, , , , , & show all
Pages 1737-1747 | Received 29 Apr 2021, Accepted 22 Jun 2021, Published online: 31 Aug 2021

References

  • Ai Z, Liu S, Qu F, et al. (2019). Effect of stereochemical configuration on the transport and metabolism of catechins from green tea across Caco-2 monolayers. Molecules 24:1185.
  • Ali I, Welch MA, Lu Y, et al. (2017). Identification of novel MRP3 inhibitors based on computational models and validation using an in vitro membrane vesicle assay. Eur J Pharm Sci 103:52–9.
  • Brown JE, Khodr H, Hider RC, Rice-Evans CA. (1998). Structural dependence of flavonoid interactions with Cu2+ ions: implications for their antioxidant properties. Biochem J 330:1173–8.
  • Chan LMS, Lowes S, Hirst BH. (2004). The ABCs of drug transport in intestine and liver: efflux proteins limiting drug absorption and bioavailability. Eur J Pharm Sci 21:25–51.
  • Chen H, Parks TA, Chen X, et al. (2011). Structural identification of mouse fecal metabolites of theaflavin 3, 3'-digallate using liquid chromatography tandem mass spectrometry. J Chromatogr A 1218:7297–306.
  • Dou QP, Landis-Piwowar KR, Chen D, et al. (2008). Green tea polyphenols as a natural tumour cell proteasome inhibitor. Inflammopharmacol 16:208–12.
  • Dreiseitel A, Oosterhuis B, Vukman KV, et al. (2009). Berry anthocyanins and anthocyanidins exhibit distinct affinities for the efflux transporters BCRP and MDR1. Br J Pharmacol 158:1942–50.
  • Farabegoli F, Papi A, Bartolini G, et al. (2010). (-)Epigallocatechin-3-gallate downregulates P-gp and BCRP in a tamoxifen resistant MCF-7 cell line. Phytomedicine 17:356–62.
  • Ferreira ICFR, Martins N, Barros L. (2017). Phenolic compounds and its bioavailability: in vitro bioactive compounds or health promoters? Adv Food Nutr Res 82:1–44.
  • Friedman M, Mackey BE, Kim HJ, et al. (2007). Structure-activity relationships of tea compounds against human cancer cells. J Agric Food Chem 55:243–53.
  • García-Arieta A. (2014). Interactions between active pharmaceutical ingredients and excipients affecting bioavailability: impact on bioequivalence. Eur J Pharm Sci 65:89–97.
  • Henning SM, Aronson W, Niu Y, et al. (2006). Tea polyphenols and theaflavins are present in prostate tissue of humans and mice after green and black tea consumption. J Nutri 136:1839–43.
  • Hirai T, Fukui Y, Motojima K. (2007). PPARalpha agonists positively and negatively regulate the expression of several nutrient/drug transporters in mouse small intestine. Biol Pharm Bull 30:2185–90.
  • Hiroshige H, Zong X, Kazumi Y, et al. (2003). Human colon cancer cells undergo apoptosis by theaflavin digallate, epigallocatechin gallate, and oolong tea polyphenol extract. J Herbs Spices Med Plants 10:29–38.
  • Jhoo JW, Lo CY, Li SM, et al. (2005). Stability of black tea polyphenol, theaflavin, and identification of theanaphthoquinone as its major radical reaction product. J Agric Food Chem 53:6146–50.
  • Jungil H, Lambert JD, Lee SH, et al. (2003). Involvement of multidrug resistance-associated proteins in regulating cellular levels of (-)-epigallocatechin-3-gallate and its methyl metabolites. Biochem Biophys Res Commun 310:222–7.
  • Kadowaki M, Sugihara N, Tagashira T, et al. (2008). Presence or absence of a gallate moiety on catechins affects their cellular transport. J Pharm Pharmacol 60:1189–95.
  • Kast HR, Goodwin B, Tarr PT, et al. (2002). Regulation of multidrug resistance-associated protein 2 (ABCC2) by the nuclear receptors pregnane X receptor, farnesoid X-activated receptor, and constitutive androstane receptor. J Biol Chem 2774:2908–15.
  • König J, Nies AT, Cui Y, et al. (1999). Conjugated export pumps of the multidrug resistance protein (MRP) family: localization, substrate specifity, and MRP2-mediated drug resistance. Biochim Biophys Acta 1461:377–94.
  • Li DW, Meng L, Zhang KX, Zhang WK. (2015). Anticancer and apoptotic effects of theaflavin-3-gallate in non-small cell lung carcinoma. Bangladesh J Pharmacol 10:790–8.
  • Lin JK, Chen YW, Lin-Shiau SY. (2006). Inhibition of breast cancer cell proliferation by theaflavins from black tea through suppressing proteasomal activities. Cancer Res 66:538–9.
  • Lipinski CA, Lombardo F, Dominy BW, Feeney PJ. (2001). Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 46:3–26.
  • Liu W, Zhou J, Gong Z. (2013). Research progress in functional activity of theaflavins. Food Sci 34:386–91.
  • Miller NJ, Castelluccio C, Tijburg L, Rice-Evans C. (1996). The antioxidant properties of theaflavins and their gallate esters-radical scavengers or metal chelators? FEBS Lett 392:40–4.
  • Mujtaba T, Dou QP. (2012). Black tea polyphenols inhibit tumor proteasome activity. In Vivo 26:197–202.
  • Mulder TP, van Platerink CJ, Wijnand Schuyl PJ, van Amelsvoort JM. (2001). Analysis of theaflavins in biological fluids using liquid chromatography-electrospray mass spectrometry. J Chromatogr B Biomed Sci Appl 760:271–9.
  • Ni D, Ai Z, Munoz-Sandoval D, et al. (2020). Inhibition of the facilitative sugar transporters (GLUTs) by tea extracts and catechins. FASEB J 34:9995–16.
  • Özvegy-Laczka C, Várady G, Köblös G, et al. (2005). Function-dependent conformational changes of the ABCG2 multidrug transporter modify its interaction with a monoclonal antibody on the cell surface. J Biol Chem 280:4219–27.
  • Pereira-Caro G, Moreno-Rojas JM, Brindani N, et al. (2017). Bioavailability of black tea theaflavins: absorption, metabolism, and colonic catabolism. J Agric Food Chem 65:5365–74.
  • Qu F, Zeng W, Tong X, et al. (2020). The new insight into the influence of fermentation temperature on quality and bioactivities of black tea. LWT-Food Sci Tech 117:108646.
  • Renes J, de Vries EG, Nienhuis EF, et al. (1999). ATP- and glutathione-dependent transport of chemotherapeutic drugs by the multidrug resistance protein MRP1. Br J Pharmacol 126:681–8.
  • Selma MV, Espin JC, Tomas-Barberan FA. (2009). Interaction between phenolics and gut microbiota: role in human health. J Agric Food Chem 57:6485–501.
  • Silbermann MH, Boersma AW, Janssen AL, et al. (1989). Effects of cyclosporin A and verapamil on the intracellular daunorubicin accumulation in chinese hamster ovary cells with increasing levels of drug-resistance. Int J Cancer 44:722–6.
  • Song Y, Guan R, Lyu F, et al. (2014). In vitro cytotoxicity of silver nanoparticles and zinc oxide nanoparticles to human epithelial colorectal adenocarcinoma (Caco-2) cells. Mutat Res 769:113–8.
  • Stewart BH, Chan OH, Lu RH, et al. (1995). Comparison of intestinal permeabilities determined in multiple in vitro and in situ models: relationship to absorption in humans. Pharm Res 12:693–9.
  • Su YL, Leung LK, Huang Y, Chen ZY. (2003). Stability of tea theaflavins and catechins. Food Chem 83:189–95.
  • Tan KP, Wang B, Yang MD, et al. (2010). Aryl hydrocarbon receptor is a transcriptional activator of the human breast cancer resistance protein (BCRP/ABCG2). Mol Pharmacol 78:175–85.
  • Tan Q, Peng L, Huang Y, et al. (2019). Structure-activity relationship analysis on antioxidant and anticancer actions of theaflavins on human colon cancer cells. J Agric Food Chem 67:159–70.
  • Tu Y, Yang X, Kong J, et al. (2012). Antioxidant capability of epi-catechins and theaflavins in vitro by scavenging hydroxyl free radical. Nat Prod Res Dev 24:653–9.
  • Vaessen SFC, Van Lipzig MMH, Pieters RHH, et al. (2017). Regional expression levels of drug transporters and metabolizing enzymes along the pig and human intestinal tract and comparison with Caco-2 Cells. Drug Metab Dispos 45:353–60.
  • Vaidyanathan JB, Walle T. (2003). Cellular uptake and efflux of the tea flavonoid (-) epicatechin-3-gallate in the human intestinal cell line Caco-2 . J Pharmacol Exp Ther 307:745–52.
  • Vaidyanathan J, Walle T. (2001). Transport and metabolism of the tea flavonoid (-)-epicatechin by the human intestinal cell line Caco-2. Pharm Res 18:1420–5.
  • Valko M, Leibfritz D, Moncol J, et al. (2007). Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 39:44–84.
  • Verstraeten SV, Keen CL, Schmitz HH, et al. (2003). Flavan-3-ols and procyanidins protect liposomes against lipid oxidation and disruption of the bilayer structure. Free Radic Biol Med 34:84–92.
  • Wan XC. (2003). Tea biochemistry (3th ed.). Beijing: China Agriculture Press
  • Wang E, Barecki-Roach M, Johnson WW. (2002). Elevation of P-glycoprotein function by a catechin in green tea. Biochem Biophys Res Commun 297:412–8.
  • Wang Q, Strab R, Kardos P, et al. (2008). Application and limitation of inhibitors in drug-transporter interactions studies. Int J Pharm 356:12–8.
  • Wang W, Liu M, Xu R, et al. (2018). LEF1 regulates MDR1/P-gp-mediated multidrug resistance in colon cancer cells. J Shanxi Med Univ 8:905–11.
  • Wang YM, Lin WW, Chai SC, et al. (2013). Piperine activates human pregnane X receptor to induce the expression of cytochrome P450 3A4 and multidrug resistance protein 1. Toxicol Appl Pharmacol 272:96–107.
  • Wu JJ, Lin N, Li FY, et al. (2016). Induction of P-glycoprotein expression and activity by aconitum alkaloids: implication for clinical drug-drug interactions. Sci Rep 6:25343.
  • Xie H, Luo Z, Li X. (2018). Chemical mechanism of antioxidation of theaflavin. Food Mach 34:23–6.
  • Yee S. (1997). In vitro permeability across Caco-2 cells (colonic) can predict in vivo (small intestinal) absorption in man-fact or myth. Pharm Res 14:763–6.
  • Yi W, Akoh CC, Fischer J, Krewer G. (2006). Absorption of anthocyanins from blueberry extracts by Caco-2 human intestinal cell monolayers. J Agric Food Chem 54:5651–8.
  • Yoshinori T, Tetsuo O, Hiroo S. (1971). Studies on the mechanism of oxidation of catechins, Part V: isolation of crystalline theaflavin gallates from black tea and their formation from catechins. Nippon Nogeikagaku Kaishi 45:176–83.
  • Zhang G, Miura Y, Yagasaki K. (2000). Suppression of adhesion and invasion of hepatoma cells in culture by tea compounds through antioxidative activity. Cancer Lett 159:169–73.
  • Zhang L, Zheng Y, Chow MSS, Zuo Z. (2004). Investigation of intestinal absorption and disposition of green tea catechins by Caco-2 monolayer model. Int J Pharm 287:1–12.
  • Zhu X, Yang Q. (2012). A new protocol for a short-term Caco-2 monolayer culture system and its evaluation. Fudan Univ J Med Sci 39:68–73.